Дипломная работа: Математические игры как средство развития познавательного интереса учащихся. Познавательные игры как средство развития познавательного интереса

Светлана Князева
Консультация «Дидактическая игра как средство развития познавательного интереса детей дошкольного возраста»

"Дидактическая игра как средство развития познавательного интереса детей дошкольного возраста ".

Стремление познавать окружающий мир присуще человеку, есть оно и в каждом ребенке. Однако познание - функция не только интеллекта человека . Познание - функция его личности. Оно невозможно без таких качеств, как активность и самостоятельность, уверенность в себе, в своих способностях и силах. Для малышей, кроме того, необходимо ощущение защищенности и безопасности. Поэтому от того, какая психологическая атмосфера сложилась в группе, зависит насколько проявится и разовьется у каждого ребенка интерес к окружающему миру , к людям, стремление узнавать и учиться новому.

Основной способ познания для ребенка- ваши рассказы, ответы на его вопросы, а также ваши вопросы к нему. При поиске ответа нужно размышлять вслух вместе с ребенком. С 4 лет с ребенком необходимо беседовать серьезно : как размышляет взрослый, так будут размышлять и дети.

Организация свободного общения с детьми дает для воспитателя возможность раскрыть наиболее полно свой творческий потенциал.

Воспитатель должен уметь включиться в специфически дошкольную форму деятельности –игру на правах равного партнера. Умение интересно играть сразу же открывает ему доступ в детские группы, позволяет войти в доверительные отношения с детьми. Но для этого ему следует овладеть способами построения игры, принятыми в детской субкультуре, умело пользоваться ими.

Поэтому целесообразно играть по подгруппам .

Конкретные сведения об окружающем мире дети гораздо легче усваивают а процессе игры, повседневного свободного общения с воспитателем, чтения специально подобранных книг, а также в организованной воспитателем деятельности по развитию сенсорных действий , мышления, изобразительной деятельности, конструирования , которые всегда включают какой-либо конкретный материал.

В дидактической игре содержится комплекс разнообразной деятельности детей : мысли, чувства, поиски активных способов решения игровой задачи, подчинение их условиям и обстоятельствам игры, отношение детей к игре . Дидактическая игра представляет собой развитие ребёнка средствами активной и интересной для детей игровой деятельности.

Дидактическая игра лишь отвечает требованиям полной систематизации знаний : иногда это-"взрыв удивления"детей от восприятия чего-то нового, неизведанного; иногда -игра- "поиск и открытие", и всегда игра радость . Наполненность обучения эмоционально-познавательным содержанием особенность дидактической игры .

Дидактической игре свойственно обязательное наличие дидактической задачи , игровых правил и действий.

Дидактическая задача -один из основных элементов игры, которая определяется целью обучающего и воспитательного воздействия.

Наличие дидактической задачи или нескольких задач подчеркивает обучающий характер игры, направленность обучающего содержания на процесс познавательной деятельности детей . Дидактическая задача определяется воспитателем и отражает его обучающую деятельность.

Структурным элементом игры является игровая задача, осуществляемая детьми в игровой деятельности. Две задачи- дидактическая и игровая отражают взаимосвязь обучения и игры. В отличие от прямой постановки дидактической задачи на занятиях в дидактической игре она осуществляется через игровую задачу, определяет игровые действия, становится задачей самого ребенка, возбуждает желание и потребность решить ее, активизирует игровые действия. Дидактическая задача реализуется на протяжении всей игры через осуществление игровой задачи, игровых действий, а итог ее решения обнаруживается в финале. Только при этом условии дидактическая игра может выполнить функцию обучения и вместе с тем будет развиваться как игровая деятельность.

Игровые действия составляют основу дидактической игры- без них невозможна сама игра . Чем разнообразнее и содержательнее игровые действия, тем интереснее для детей сама игра и тем успешнее решаются познавательные и игровые задачи . Игровым действиям детей нужно учить . Лишь при этом условии игра приобретает обучающий характер и становиться содержательной.

Игровые действия- не всегда практические внешние действия, когда нужно что-то тщательно рассмотреть, сравнить, разобрать и т. д. Это и сложные умственные действия, выраженные в процессах целенаправленного восприятия, наблюдения, сравнения, припоминания ранее усвоенного, умственные действия, выраженные в процессах мышления.

В разных играх игровые действия различны по их направленности и по отношению к играющим .

Одним из составных элементов дидактической игры являются правила игры. Их содержание и направленность обусловлены общими задачами формирования личности ребенка и коллектива детей , познавательным содержанием , игровыми задачами и игровыми действиями в их развитии и обогащении . Правила содержат нравственные требования к взаимоотношениям детей , к выполнению ими норм поведения. В дидактической игре правила являются заданными. Используя правила, воспитатель управляет игрой, процессами познавательной деятельности , поведением детей .

Известно, что возможности дидактической игры в передаче знаний ограничены, но это эффективный метод усвоения знаний и овладения способами познавательной деятельности , умениями и навыками (обследовать, сравнивать, описывать, выявлять свойства) .В игре формируется умение самостоятельно и рационально использовать знания при решении игровой за-дачи. Значима дидактическая игра в формировании личности ребенка. Готовность решать мыслительные задачи, желание выигрывать, соблюдая правила- таков стиль поведения ребенка в игре. Поэтому игру не следует превращать в занятие, воспитатель играет вместе с детьми , поощряет их положительные эмоции, двигательную и умственную активность.

Варианты организации и проведения игр различны и зависят от назначения их. Дети распределяются по 2-4 человека и воспитатель последовательно проводит с ними 2-3 игры, включаясь в процесс игры в качестве участника. Или дети играют в разные , меняясь ими. В этих случаях игра является формой организации познавательной деятельности . Использование игры в качестве метода обучения предполагает фронтальное руководство деятельностью детей . Воспитатель выполняет роль ведущего, не превращая игры в игровые упражнения.

Руководство дидактическими играми довольно сложный процесс. Воспитателю необходимо стимулировать игровую состязательность, не упуская при этом развивающего и воспитывающего воздействия игры.

Сформировать у детей умение мыслить логично, самостоятельно, контролировать свои действия в процессе обучения довольно сложно. Поэтому создаются условия и ведётся целенаправленная работа по формированию самостоятельной детской деятельности.

Для самостоятельной деятельности подбираются игры, пособия, которые увлекательны для детей в данный период . Игры интересные , содержательные, но требуют длительного освоения. Игры на плоскостное и объемное моделирование, разнообразные головоломки. Каждый из детей осваивает игру индивидуально, результаты различны. Он самостоятелен в выборе игры, постановке цели, достижения результата. При правильном руководстве, состоящем в побуждении детей к активной деятельности, в совместной с ребенком игре формируется умение находить путь решения нестандартной задачи, проявлять инициативу, творчество.

Публикации по теме:

Автореферат к курсовой работе «Дидактическая игра как средство развития познавательного интереса» Я, Глотова Полина Михайловна, студентка группы Д-31. Представляю вашему вниманию курсовую работу на тему: «Дидактическая игра как средство.

Дидактическая игра как средство развития мышления детей дошкольного возраста В современных условиях особую актуальность приобретает проблема развития у дошкольников мышления. Наиболее эффективным средством развития.

Дидактическая игра как средство развития внимания у детей дошкольного возраста Внимание - одна из основных психических функций, на которой базируется обучение. Внимание отражает функциональное состояние человеческого.

Дидактическая игра, как средство сенсорного развития детей раннего возраста Дошкольный возраст-время активного познания окружающего мира. Встав на ноги, малыш начинает делать открытия. Он знакомится с предметами,.

Компьютер - устройство, обрабатывающее данные, следуя ряду команд, который носит название компьютерной программы. В наше время трудно представить.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФГБОУ ВПО «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ И ПРОФЕССИОНАЛЬНОЙ

ПЕРЕПОДГОТОВКИ РАБОТНИКОВ ОБРАЗОВАНИЯ ВЫПУСКНАЯ АТТЕСТАЦИОННАЯ РАБОТА

ТЕМА: ДИДАКТИЧЕСКАЯ ИГРА - КАК СРЕДСТВО РАЗВИТИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА УЧАЩИХСЯ НА УРОКАХ ИСТОРИИ ДРЕВНЕГО МИРА

Оренбург, 2013

Глава I Теоретические основы развития познавательного интереса в процессе обучения истории

1.1 Психолого-педагогическое обоснование понятия «познавательный интерес»

1.2 Дидактическая игра на уроке

1.3 Классификация игровой деятельности

Глава II Практическое применение дидактических игр на уроках истории

2.1Методика организации исторических игр

2.2Разработкаконспекта урока с использованием дидактических игр

2.3Примеры ролевых и театрализованных, применяемых на уроках в собственной практике

Заключение

Литература

Приложение

Введение

В настоящее время практически каждый учитель истории применяет в своей деятельности нетрадиционные формы обучения школьников. Перед современным учителем истории вот уже целое десятилетие стоят задачи, навеянные пересмотром содержания предмета: альтернативные подходы к оценке событий прошлого, прогнозирование событий и явлений, неоднозначные этические оценки исторических личностей и хода событий. Само собой разумеется, что обсуждение этих вопросов на уроке невозможно без приобретения учащимися опыта ведения диалога и дискуссии, приобщения к творческой деятельности, коммуникативных умений и способности к моделированию ситуаций. Отсюда следует, что: «…арсенал форм современного учителя истории должен не только обновляться под влиянием усиливающейся роли личности учащегося в обучении, но и трансформироваться в сторону необычных, игровых форм преподнесения учебного материала».

Дидактическая игра, являясь игровой формой обучения, соединяет познавательное и занимательное. Именно это сочетание обеспечивает переход от одной ведущей деятельности к другой и позволяет детям овладевать знаниями играя. Создание игровой атмосферы на уроке развивает познавательный интерес и активность учащихся.

Дидактическая игра является одной из уникальных форм, позволяющих сделать интересной и увлекательной не только работу учащихся на творческо-поисковом уровне, но и будничные шаги по изучению материала, которые осуществляются в рамках воспроизводящего и преобразующего уровней познавательной деятельности - усвоение фактов, дат, имен и др. Занимательность условного мира игры делает положительно окрашенной монотонную деятельность по запоминанию, повторению, закреплению и усвоению исторической информации, а эмоциональность игрового действа активизирует все психические процессы и функции ребенка. Актуальность игры в настоящее время повышается и из-за перенасыщенности современного школьника информацией. Во всем мире, и в России в частности, постоянно расширяется предметно-информационная среда. Телевидение, видео, радио, компьютерные сети за последнее время значительно увеличили поток получаемой детьми информации и ее разнообразие. Но все эти источники предоставляют, в основном, материал для пассивного восприятия. Важной задачей становится развитие умения самостоятельной оценки и отбора получаемой информации. Развить подобные умения поможет дидактическая игра, которая служит своеобразной практикой для использования знаний, полученных на уроке и во внеурочное время. Игра способна решить еще одну проблему. Сегодняшнюю школу критикуют за перенасыщенность вербальных, рациональных методов и средств обучения, за то, что не принимается во внимание природная эмоциональность детей. Игра по своей природе синтетична, она органично объединяет эмоциональный и рациональный виды познавательной деятельности, являясь частью его жизненного опыта. Как показывает стартовая диагностика учащихся в 5 классах, все учащиеся (100%) хотят, чтобы на уроках или проводились деловые игр, или же были включены игровые моменты. Игра - это естественная для ребёнка форма обучения. Она - часть его жизненного опыта. Передавая знания посредством игры, педагог учитывает не только будущие интересы школьника, но и удовлетворят сегодняшние. Учитель, использующий игру, организует учебную деятельность, исходя из естественных потребностей ребёнка, а не исключительно из своих (взрослых) соображений удобства, порядка и целесообразности.
В процессе игры ребёнка осуществляется жизненный баланс между ним и взрослым человеком. В повседневной жизни взрослый почти всегда выступает в качестве субъекта: воспитывающего, обучающего, ведущего. Ребёнок, соответственно, объект: воспитуемый, обучаемый, ведомый. Это становится стереотипом отношений, который маленький человек не в силах изменить. В силу сложившихся стереотипных взаимоотношений с взрослым, ребёнок, являющийся объектом и субъектом одновременно, не всегда может проявить свою субъектную сущность. В игре же он решает эту проблему, создавая собственную реальность, творя свой мир.

Но самой важной, на мой взгляд, задачей современной школы является воспитание и формирование творческой личности, способной самостоятельно расширять свои знания об окружающем мире, осваивать и формировать окружающее пространство. Неоценимую помощь в этом оказывают дидактические игры на уроках истории.

Игра как феноменальное человеческое явление наиболее подробно рассматривается в таких областях знания как психология и философия. В педагогике и методике преподавания больше внимания уделяется играм дошкольников (Н.А.Короткова, Н.Я.Михайленко, А.И.Сорокина, Н.Р.Эйгес и др.) и младших школьников (Ф.Н.Блехер, А.С.Ибрагимова, Н.М.Конышева, М.Т.Салихова и др.). Это связано с тем, что педагоги рассматривают игру как важный метод обучения для детей именно дошкольного и младшего школьного возраста. Ряд специальных исследований по игровой деятельности дошкольников осуществили выдающиеся педагоги нашего времени (П.П.Блонский, Л.С.Выготский, С.Л.Рубинштейн, Д.Б.Эльконин и др.). Аспекты игровой деятельности в общеобразовательной школе рассматривались С.В. Арутюняном, О.С. Газманом, В.М. Григорьевым, О.А. Дьячковой, Ф.И.Фрадкиной, Г.П. Щедровицким и др. Но при этом дидактике использования игр в среднем звене общеобразовательной школы уделялось недостаточное внимание.

Теоретический анализ дидактических игр на уроке истории долгое время не привлекал внимание исследователей, и только в последнее десятилетие появилось несколько работ, посвященных данной проблеме (И.В.Кучерук/1991 г./, М.Г.Цыренова/1994 г./). Между тем, необходимость такого рода исследований возрастает. В современной школе возникает насущная потребность в расширении методического потенциала в целом, и в активных формах обучения в частности. К таким активным формам обучения, недостаточно освещенным в методике преподавания истории, относится дидактическая игра.

Таким образом, актуальность данной проблемы, её научная и практическая значимость, обусловили выбор темы моей работы «Дидактическая игра как средство развития познавательного интереса учащихся на уроках истории Древнего мира».

Цель:

- подбор дидактических игр, развивающих познавательный интерес на уроках истории Древнего мира.

В соответствии с указанной целью были определены следующие задачи :

Изучить и проанализировать психолого-педагогическую литературу в соответствии с темой работы;

Привести классификацию игровой деятельности в учебном процессе.

Разработать конспект урока с использованием дидактических игр.

Объект исследования: игровая учебная деятельность на уроках истории.

Предмет исследования: процесс развития познавательного интереса учащихся на уроках истории.

Гипотеза: использование дидактических игр на уроках истории влияет на развитие познавательного интереса у учащихся.

Научная новизна работы состоит в том, что в ней проведено комплексное исследование применения дидактических игр на уроках истории как средства развития познавательного интереса учащихся.

Практическая значимость состоит в возможности использования материала и основных выводов работы в педагогической практике при изучении развития познавательного интереса учащихся на уроках истории, а представленные разработки уроков могут быть использованы учителями других школ.
В ходе исследования была проведена подробная классификация дидактических игр, подробно изучен вопрос роль и место игры на уроке истории, познавательного интереса, выявлены факторы его развития, а также подобранны исторические игры, которые способствую его развитию.

работа состоит из введения, двух разделов, заключения, списка используемой литературы, приложений.

Глава I

Приступая к рассмотрению проблемы развития познавательного интереса у подростков, считается целесообразным, прежде всего, рассмотреть теоретические основы самого понятия "интерес".

Для более четкого определения ключевого для нашей работы понятия необходимо обратиться к психологическим и педагогическим исследованиям, специально посвященным изучению сущности интереса. В.А. Крутецкий дает следующее определение: "Интерес - это активная познавательная направленность человека на тот или иной предмет или явление действительности, связанная обычно с положительно эмоционально-окрашенным отношением к познанию объекта или к овладению той или иной деятельностью"23 интерес. В.А. Крутецкий считает, что интерес носит избирательный характер и влечет за собой тенденцию обращать внимание на объекты определенного рода.

Д.А. Кикнадзе24 считает, что интерес - это потребность, прошедшая стадию мотивации; сознательная направленность человека на удовлетворение познавательной потребности.

А.Н. Леонтьев, определяя сущность интереса, исходит из анализа структуры деятельности субъекта: "Интерес объективно выражается в направленности деятельности на те или иные цели"

М.Ф. Беляев в работе "Психология интереса" дает следующее определение интереса: "Интерес есть одна из психологических активностей, характеризующая как общая сознательная устремленность личности к объекту, проникнутая отношением близости к объекту, эмоционально насыщенная и влияющая на повышение продуктивности деятельности".25

Это определение, на наш взгляд является наиболее полным, так как позволяет выделить следующие специфические признаки:

объективная отнесенность, из которой следует, что беспредметных интересов быть не может;

сознательное стремление к объекту, что отличает интерес от влечения;

эмоциональная насыщенность, указывающая на то, что удовлетворение интереса связано с положительными эмоциями, а невозможность удовлетворения интереса вызывает отрицательные эмоции;

благотворное влияние на продуктивность деятельности, что делает интерес особо ценным в педагогическом отношении.

Таким образом можно сделать вывод, что, несмотря на различные трактовки сущности интереса, большинство психологов относят интерес к категории направленности, то есть к стремлению личности к объекту или деятельности. Психологическое понятие "интерес" отображает множество значимых процессов от единичных до их совокупности.

Исходя из анализа психолого-педагогической литературы, мы считаем, что интерес выступает перед нами:

и как избирательная направленность психологических процессов человека на объекты и явления окружающего мира;

и как тенденция, стремление, потребность личности заниматься именно данной областью явлений, данной деятельностью, которая приносит удовлетворение;

и как мощный побудитель активности личности, под влиянием которого все психологические процессы протекают особенно интенсивно и напряженно, а деятельность становится увлекательной и продуктивной;

и, наконец, как особое избирательное отношение к окружающему миру, к его объектам, явлениям, процессам.

Одной из самых значительных областей общего феномена "интерес" является познавательные интересы, имеющие особое значение в школьном возрасте.

Что такое познавательный интерес? Какова его психолого-педагогическая природа?

Для названия познавательного интереса используются такие понятия как «духовная жажда», «позыв», «ярость к объекту», «непреодолимое бескорыстное стремление». Другой важной характеристикой познавательного интереса является то, что побуждение к деятельности, каковым является интерес, ярко насыщено эмоциональностью. Что это значит? Это означает, что процесс познания окрашен эмоциями, которые могут быть вызваны самим процессом умственного труда, либо предметом познания, либо перспективой, которая увлекает за собой. Третьей важной особенностью интереса является его, так называемая, «свободность», отсутствие принудительных влияний со стороны для его возникновения.

Под сутью познавательного интереса понимается избирательная направленность личности на процесс познания с целью «овладения сущностью познаваемого» .

Познавательный интерес представляет собой особый сплав важнейших для развития личности психологических процессов.26 В интеллектуальной деятельности, протекающей под влиянием познавательного интереса, проявляются:

активный поиск;

исследовательский подход;

готовность к решению задач.

Эмоциональные проявления, вплетенные в познавательный интерес, выражаются:

эмоциями удивления;

чувством интеллектуальной радости;

чувством успеха.

Генетически ранней формой познавательного интереса является учебный интерес, который возникает в процессе обучения и его основу составляет потребность в познании. Объектом учебного интереса является содержание определенной области образования. Факторами, влияющими на развитие учебных интересов, являются: педагогическая оценка, содержание обучения, успешность занятий по предмету, качество преподавания, методы обучения, организация фронтальной и индивидуальной работы с детьми.

В школе объектом познавательного интереса учащихся является содержание учебных предметов, овладение которыми составляет основное значение учения.

Отсюда следует, что в сферу познавательного интереса включается не только приобретаемые школьником знания, но и процесс овладения знаниями, процесс учения в целом, позволяющий приобретать необходимые способы познания.

Своеобразие познавательного интереса состоит в сложном познавательном отношении к миру предметов, явлений, к знаниям о них. Это отношение выражается в углубленном изучении, в постоянном и самостоятельном добывании знаний в интересующей области, в настойчивом преодолении трудностей, лежащих на пути к овладения знаниями.

Особенность познавательного интереса заключается в том, что он отражает единство объективного и субъективного. Поэтому целенаправленное воспитание интереса может опираться на объективные свойства явлений, процессов действительности, которые привлекают учащихся. Опираясь на интерес и зная, что составляет субъективную значимость для школьника, можно так строить учебный процесс, чтобы вызвать, укреплять и совершенствовать познавательные интересы учащихся.

Познавательный интерес может выступать в познавательной деятельности школьника как сильный и значимый мотив. Познавательный интерес как мотив личности побуждает школьника заниматься увлеченно не только на уроке или в процессе подготовки домашних заданий. Под влиянием этого сильного мотива школьник читает дополнительную литературу по интересующему его вопросу, постоянно ставит перед собой вопросы, находит источники удовлетворения своего интереса. Действие познавательного интереса как мотива учения бескорыстны. Школьник не нуждается в постоянном внешнем стимулировании учения, сам идет в школу с желанием познавать, приобретать знания и активно в этом участвовать. Познавательный интерес определяет инициативу в постановке познавательных целей помимо тех, которые ставит учитель. Познавательный интерес придает поисковый, творческий характер любому виду, любой форме познавательной деятельности.

Познавательный интерес - важнейшее образование личности, которое складывается в процессе жизнедеятельности человека, формируется в социальных условиях его существования и никоим образом не является присущим человеку от рождения.

Познавательный интерес - интегральное образование личности. Интерес имеет сложнейшую структуру, которую составляют как отдельные психические процессы: интеллектуальные, эмоциональные, регулятивные - так и объективные, и субъективные связи человека с миром, выраженные в отношениях.

Познавательный интерес - явление многозначное, поэтому на процессы обучения и воспитания он может влиять различными своими сторонами. В педагогической практике познавательный интерес рассматривают часто лишь как внешний стимул этих процессов, как средство активизации познавательной деятельности учащихся, эффективный инструмент учителя, позволяющий ему сделать учебный процесс привлекательным, выделять в обучении именно те аспекты, которые могут привлечь к себе непроизвольное внимание учеников, заставить активизировать их мышление, волноваться и переживать, увлеченно работать над учебной задачей.

Такой подход к познавательному процессу как внешнему стимулу обучения может иметь основания. Действительно, если из окружающего мира человек отбирает только то, что является для него более значимым, то следует задуматься над тем, что особо важное и значительное в обучении нужно представить в интересной для учеников форме.

1.2 Дидактическая игра - современный и признанный метод обучения и воспитания, обладающий образовательной, развивающей и воспитывающей функциями, которые действуют в органическом единстве.

Чтобы рассмотреть дидактическую игру на уроке истории, необходимо понять, что же такое игра вообще и что есть игра дидактическая. Дидактическая игра - это занимательная для субъекта учебная деятельность в условных ситуациях. Поскольку обучение - это « процесс целенаправленной передачи общественно - исторического опыта; организация формирования знаний, умений, навыков», можно сказать, что дидактическая игра - условная занимательная для субъекта деятельность, которая направлена на формирование знаний, умений и навыков.

Понимание сущности дидактической игры позволяет выделить наиболее значимые ее составляющие (компоненты):

деятельность, понимаемая как важнейшая форма проявления жизни человека, его активного отношения к окружающей действительности; в этой деятельности развиваются психические процессы, формируются умственные, эмоциональные и волевые качества личности, ее способности и характер;

условность, которая понимается как признак отражения действительности, указывающий на не отождествлённость образа и его объекта. В нашем случае, имеется в виду такая деятельность, которая осознается как «невзаправду», «понарошку» (К.С. Станиславский выражает это словами «если бы» или «как будто»). (9, с.12)

Но не всякая деятельность в условных ситуациях является игрой.

Деятельность, чтобы быть игрой, должна быть занимательна для играющего. Деятельность в игре - не цель, а средство. А вот занимательность - цель. В учебной же деятельности условность направлена на обучение, на возможность упражнения, тренировки различных умений и навыков.

Возвращаясь к сравнению игры и учения, важно заметить, что игра жизнеспособна, когда в ней присутствует элемент непредсказуемости. Если деятельность полностью предсказуема, то она перестает быть игрой.

Важно заметить, что именно термин «занимательность» точно отражает суть игры (а не забавность, развлекательность, состязательность). В забавности или развлекательности есть элемент отсутствия деятельности; далеко не все игры состязательны. В то же время понятие «занимательность» отражает больше увлеченность деятельностью; оно содержит в себе субъективную особенность игры: одна и та же игровая ситуация может для одного являться игрой, для другого - нет. Занимательность представляет собой необходимый эмоциональный фон для любой игры.

Игра как таковая, имеет два компонента: деятельностный и условный, которые могут наполняться разным содержимым и делать одну игру совершенно не похожей на другую, но тем не менее эти два компонента просматриваются в каждой игре. Именно условный характер превращает ту или иную деятельность в игру. Если мы рассмотрим деятельностный аспект без условного, то получится не что иное, как труд или упражнение.

Игра может стать дидактической, если учебный материал, или какая-то его часть может лечь в основу содержания игры: обычно образовательный материал становится содержанием условного компонента, а развивающий - содержанием деятельностного компонента.

В дидактической игре отчетливо просматривается двойственный характер: при объяснении игры для детей главное - сама игра, а для учителя главное - дидактический результат (методическое значение игры).

Как создается игра, какова ее структура? Во-первых, дидактическая игра имеет свою устойчивую структуру, которая отличает ее от всякой другой деятельности. Во-вторых, основными структурными компонентами дидактической игры являются: игровой замысел, правила, игровые действия, познавательное содержание или дидактические задачи, оборудование, результаты игры. В отличие от игр вообще дидактическая игра обладает существенным признаком - наличием четко поставленной цели обучения и соответствующего ей педагогического результата, которые могут быть обоснованы, выделены в явном виде и характеризуются учебно-познавательной направленностью. Остановимся более подробно на структурных компонентах дидактической игры. Игровой замысел - первый структурный компонент игры - выражен, как правило, в названии игры. Он заложен в той дидактической задаче, которую надо решить в учебном процессе. Игровой замысел часто выступает в виде вопроса, как бы проектирующего ход игры, или в виде загадки. В любом случае он придает игре познавательный характер, предъявляет к участникам игры определенные требования в отношении знаний. Каждая дидактическая игра имеет правила, которые определяют порядок действий и поведение учащихся в процессе игры, способствуют созданию на уроке рабочей обстановки. Поэтому правила дидактических игр должны разрабатываться с учетом цели урока и индивидуальных возможностей учащихся. Этим создаются условия для проявления самостоятельности, настойчивости, мыслительной активности, для возможности проявления у каждого ученика чувства удовлетворенности, успеха. Кроме того, правила игры воспитывают умение управлять своим поведением, подчиняться требованиям коллектива. Существенной стороной дидактической игры являются игровые действия, которые регламентируются правилами игры, способствуют познавательной активности учащихся, дают им возможность проявить свои способности, применить имеющиеся знания, умения и навыки для достижения целей игры. Очень часто игровые действия предваряются устным решением задачи. Учитель, как руководитель игры, направляет ее в нужное дидактическое русло, при необходимости активизирует ее ход разнообразными приемами, поддерживает интерес к игре, подбадривает отстающих учеников. Основой дидактической игры, которая пронизывает собой ее структурные элементы, является познавательное содержание. Познавательное содержание заключается в усвоении тех знаний и умений, которые применяются при решении учебной проблемы, поставленной игрой. Оборудование дидактической игры в значительной мере включает в себя оборудование урока. Это наличие технических средств обучения диапозитивов, диафильмов, видеофильмов, использование мультимедиа средств. Сюда также относятся различные средства наглядности: таблицы, модели, а также дидактические раздаточные материалы, грамоты, благодарности, подарки.

Дидактическая игра имеет определённый результат , который является финалом игры, придаёт игре законченность. Он выступает прежде всего в форме решения поставленной учебной задачи и даёт школьникам моральное и умственное удовлетворение. Для учителя результат игры всегда является показателем уровня достижений учащихся или в усвоении знаний, могут или в их применении.

Все структурные элементы дидактической игры взаимосвязаны между собой, отсутствие основных из них разрушают игру. Без игрового замысла и игровых действий, без организующих игру правил, дидактическая игра или невозможна, или теряет свою специфическую форму, превращается в выполнение указаний, упражнений. Поэтому при подготовке к уроку, содержащему дидактическую игру, необходимо составить краткую характеристику хода игры (сценарий), указать временные рамки игры, учесть уровень знаний и возрастные особенности учащихся, реализовать межпредметные связи. Сочетание всех элементов игры и их взаимодействие повышают организованность игры, ее эффективность, приводят к желаемому результату. Ценность дидактических игр заключается в том, что в процессе игры дети в значительной мере самостоятельно приобретают новые знания, активно помогают друг другу в этом.

СТРУКТУРА ОРГАНИЗАЦИИ ИГРЫ

Выбор игры

Отобрав игры, соответствующие программному содержанию, учитель должен четко представить себе, какие результаты он хочет получить. От этого часто зависит оформление замысла, игровые действия, содержание формулировка правил, ход игры.

Подготовка игры

а) Предварительная подготовка учащихся к игре.

Не все игры содержат этот этап. Задача учителя заключается в том, чтобы все дети понимали, что они должны сделать в ходе подготовительной работы. Предварительная подготовка зачастую несет основную дидактическую нагрузку. Это в основном относится к ролевым играм. Но учителю надо больше доверять детям, не надо полностью организовывать подготовку, пусть они сами проявят самостоятельность. И вообще, не следует перегружать детей подготовкой к игре, лучше стараться помогать им уже в ходе самой игры: воодушевить, подсказать верное решение (когда это возможно), поддерживать высокий тонус и т.д.

б) Подготовка непосредственно перед игрой.

Этот этап должен быть направлен на создание эмоционального игрового настроения (переставить столы, включить музыку, приготовить к использованию ТСО, вывесить схемы, картины); проверить готовность учащихся к игре.

Введение в игру

а) Предложение игры детям.

Обычно организатору игры достаточно сказать: «А теперь давайте поиграем в …» или «А чтобы вы лучше запомнили этот материал, мы с вами поиграем в игру» или «В связи с этим есть такая игра…». Этого достаточно, чтобы ребята обрадовались и настроились на другой характер работы. Желательно, чтобы при предложении игры говорилось ее название. Тогда в дальнейшем сами ребята смогут проявить инициативу в построении и планировании учебно-игровой деятельности. Но иногда возможны какие-то необычные формы предложения.

б) Объяснение правил игры.

Необходимо сформулировать их кратко и конкретно. Многое усвоится в самой игре, если кому-то что-то не понятно.

в) Выбор участников игры

Представьте, что учителю нужно выбрать четырех участников для игры, а в классе нет желающих. Если учитель сам выберет игроков, часть активных ребят тут же могут с негодованием «выключиться» из игры, потому что не их выбрали. Они найдут, на что обидеться. Но можно сделать иначе - тот же выбор игроков обыграть, преследуя образовательные и дисциплинирующие цели. Учитель объявляет: « Для игры нужно четыре участника, но поскольку желающих много, мы поступим так: на доске нарисована головоломка. Первые четыре человека, которые быстрее других в тетради напишут решение и будут участниками». Тогда уже для возмущений будет меньше поводов, так как выбор был осуществлен по справедливости.

Для учителя важно включить каждого школьника в активный познавательный процесс. Поэтому целесообразно, чтобы участников было как можно больше. Кто может фиксировать ошибки, другой - контролировать время и т.д.

Несмотря на важность дидактического результата, при проведении игры необходимо понять, что методическое содержание - это скрытая часть « айсберга», которая должна волновать учителя до начала игры. Как только игра началась, главное - это игровое действо. Ведь чем интереснее и занимательнее игра, тем больший развивающий, образовательный и воспитательный результаты могут быть достигнуты.

а) Начало игры.

На этой стадии можно уточнить некоторые нюансы, касающиеся правил игры. Они проясняются в игре первых же участников. И тогда учителю нужно остановить игру и кратко объяснить, что нарушено и как правильно нужно участвовать в игре. Но не менее важно, чтобы игра набрала обороты. Игры с правилами обычно требуют хорошего темпа. И это « в руках» организатора: кому-то подсказать, кого-то подогнать восклицаниями « Ускоряем темп!», « Долгая пауза!»…

б) Развитие игрового действа (кульминация).

На этой стадии максимально проявляется азарт играющих, одновременно возрастает интерес и участников, и зрителей (если таковые есть). Организатору важно следить за выполнением правил и иногда « добавить поленья в горящий костер», то есть подбодрить проигравшего, заметить что-нибудь интересное в его участии, кроме того, можно подзадорить болельщиков или зрителей и т.д. Если в начале игры нарушение правил можно простить, то сейчас всякое нарушение должно быть четко отмечено, участники получают штрафные очки или выходят из игры.

в) Заключительный этап игры.

Учителю необходимо почувствовать, когда спадает напряжение; не следует ждать, что игра сама надоест учащимся. Нужно вовремя поставить точку, чтобы не только не только не пропало созданное игрой приподнятое настроение, но и не расфокусировалось направленное на изучаемый материал внимание. Для того чтобы вовремя остановить игру, нужно заранее сказать о приближении ее окончания (например: «Еще два участника и мы заканчиваем!»). У ребят, таким образом, появляется время, чтобы психологически подготовиться к окончанию игры. Это один из приемов, чтобы избежать того момента, когда дети всем классом будут просить: « Ну давайте еще поиграем!»; это облегчит переход к другим видам деятельности.

Подведение итогов (оценка и поощрение школьников)

Подведение итогов игры включает в себя как дидактический результат (что нового учащиеся узнали, как справились с заданием, чему научились), так и собственно игровой (кто оказался лучшим и что помогло ему достичь победы).

Сложен момент объявления результатов соревнования, занимающего большую часть урока или даже выходящего за его пределы (исторической викторины, конкурса и т. д. Ведь класс может перессориться, так как для каждого принимавшего участие его группа всегда кажется лучшей. А иногда так получается, что лучше участвует группа, которая меньше всего готовилась (хороший экспромт). Естественно, другим группам, которые потратили много времени на подготовку, обидно. Учитель должен понимать все это и умело принимать решения. Ведь жесткие эмоциональные конфликты не входят в расчет педагогов. Нездоровый эмоциональный фон в ученическом коллективе после игры, проведенной на уроке, - вина учителя.

Чтобы избежать этих проблем, необходимо:

а) перед началом подготовки к игре четко объявить критерии (лучше, чтобы школьники записали их в тетрадь), по которым будет производиться оценка результатов;

б) конкретно обнародовать результаты. Итоги соревнования иногда имеет смысл объявлять не сразу после его окончания. Их можно будет огласить на следующем уроке или опубликовать в школьной газете. Страсти поутихнут, да и учитель сумеет учесть все тонкости, чтобы оценить игроков справедливо. Хотя, конечно, нельзя забывать, что школьники очень ждут результатов игры и хотят знать их как можно скорее;

в) со всей тщательностью обязательно отметить положительные стороны команд (участников), которые не заняли призовых мест;

г) отметить, что мешало игре, если таковое было. И, конечно, всем должно быть предельно ясно, что команды, которые получили призовые места, действительно были сильнее.

Анализ игры

Несмотря на то, что учитель сам чувствует настроение класса (понимает, что игра удалась или наоборот), все же это не может представлять полноценную картину, так как это коллективное настроение. Учителю, однако, важно понимать каждого ребенка, чтобы сделать выводы для проведение последующей игры - с учетом индивидуальных особенностей каждого. И поэтому важно, не смотря на то, что времени всегда катастрофически не хватает, провести этот этап - он залог эффективности игровой деятельности, развития методического мастерства учителя.

Игра - это вид деятельности, где ребенок может проявлять себя в разных позициях: просто участник, активный участник, ведущий, организатор, инициатор игры. Учитель должен стремится развивать инициативу учащихся как в подготовке и организации, так и в создании новых игр. Учитель постепенно передает свои позиции лидера в организации игровой деятельности, становясь косвенным организатором. Таким образом, происходит постепенное развитие самостоятельности учащихся, а учитель постоянно отходит от роли организатора к роли консультанта, участника игры или даже простого зрителя. Он как бы передает эстафетную палочку игрового творчества учащимся, реализуя развитие по настоящему партнерских взаимоотношений, приобретая замечательных помощников в организации учебно-игровой деятельности. Реализация игровых приемов и ситуаций при урочной форме занятий происходит по следующим основным направлениям: дидактическая цель ставится перед учащимися в форме игровой задачи; учебная деятельность учащихся подчиняется правилам игры; учебный материал используется в качестве средства игры; в учебную деятельность вводится элемент соревнования, который переводит дидактическую задачу в игровую; успешность выполнения дидактического задания связывается с игровым результатом.

Методисты давно выделили два важных признака исторической игры - наличие прямой речи (диалогов) участников и воображаемой ситуации в прошлом или настоящем (но с обсуждением прошлого). Проводя такое деление, ученые затронули вопрос о классификации игр по истории. Исследователи-педагоги выделяют различные виды учебных игр.

Игры классифицируют по различным признакам: по целям, по числу участников, по характеру отражения действительности. Н.К. Ахметов и Ж.С. Хайдаров выделили имитационные, символические и исследовательские игры. Первые ассоциируются с игровым моделированием той или иной сферы труда (имитация реальности), вторые основаны на четких правилах и игровых символах, третьи - связаны с новыми знаниями и способами деятельности .

В.Г. Семенов выделил: 1) интерактивные игры с опосредованным воздействием на ученика (ребусы, кроссворды); 2) интерактивные игры с непосредственным воздействием на ученика (сюжетно-ролевые игры); 3) неинтерактивные (индивидуальные игровые задания). Этот же исследователь классифицирует игры по степени импровизации: 1) игры с ролями и сюжетом (импровизационные); 2) игры с четким каноническим сюжетом (канонические); 3) бессюжетные игры (кроссворды) .

Г.К. Селевко разделяет игры на сюжетные, ролевые, деловые, имитационные и драматизации .

Возможно, что в приведенных педагогических классификациях, безусловно, есть смысл: они показывают, прежде всего, различие между играми с четкими внешними заданными правилами (или жестко прописанным сюжетом), отступать от которых нельзя, и играми без внешних правил, основанных на импровизации и внутренней логике моделируемого процесса. Эти игры существенно различаются не только по своим целям и содержанию, но и по степени воздействия на интеллектуальную и эмоциональную сферы учеников.

В теории и практике обучения истории была известна классификация, разделяющая игры на ретроспективные и деловые, если идет речь об играх с внутренними правилами .

Деловая игра моделирует ситуацию более поздней эпохи по сравнению с исторической обстановкой, ученик получает в ней роль только нашего современника или потомка, изучающего исторические события (археолога, писателя, журналиста). При этом явно прослеживается два подвида такой игры.

Один из них - игра-обсуждение, в процессе которой воссоздается воображаемая ситуация современности со спором, дискуссией (диспуты, симпозиумы ученых, круглые столы журналистов, телемосты и киностудии и др.). В своей обучающей основе такая игра очень близка к дискуссионной деятельности, ибо целиком строится на учебном диалоге. Как правило, такие игры даже при определенной программе деятельности проводятся с большой долей импровизации ребят.

Другая форма деловой игры - это игра- исследование, которая строится также на воображаемой ситуации современности, изучающей прошлое, но в отличие от предыдущей формы основана на индивидуальных действиях "героя", который пишет очерк, письмо, школьный учебник, фрагмент книги, газетную статью, научный доклад о том или ином историческом событии.

Ретроспективная игра (также встречается термин "реконструктивная", от слов "ретро"- воспоминание о прошлом, "реконструкция" - воссоздание), в ходе которой моделируется ситуация, ставящая учащихся в позицию очевидцев и участников событий в прошлом, каждый ученик получает роль представителя определенной общественной группы или даже исторической личности. Главным признаком игры такого типа является "эффект присутствия" и принцип исторической беллетристики - "так могло быть". Как справедливо заметил психолог А.Н. Лук, в такой игре подростку "удается прыгнуть выше себя, на некоторое время стать умнее, смелее, благороднее, справедливее".

Школьник для такой игры, как правило, придумывает имя, факты биографии, профессию, социальное положение своего "героя", и даже в ряде случаев готовит костюм, продумывает внешний облик. При этом школьник должен иметь представление о характере, чувствах, мыслях и взглядах персонажа. Ретроспективные игры помогают ученику "войти" в историческое время, почувствовать "колорит эпохи", "увидеть" конкретных людей с их миропониманием и поступками в конкретной исторической ситуации определенного времени.

Не все ретроспективные игры одинаковы, поэтому они делятся на подвиды. И.В. Кучерук делит все ретроспективные игры на: 1) формально-реконструктивные - игры-иллюстрации исторического события, документально воссоздающие обстановку, соответствующую определенной эпохе (по-иному такие игры называют театрализованными представлениями); 2) формально-конструктивные игры, когда в сюжет и уста "очевидцев" событий вкладывается собственная их оценка, и даже с учетом современного опыта познания (по-другому театрализованные игры); 3) неформально- конструктивные игры, которые дают больший простор воображению и деятельности участников, которые могут отступить от четкого сюжета (регламента), канонизации персонажей (ролевые игры дискуссионного характера) .

Нам представляется, что данная классификация не вобрала в себя все многообразие современного опыта проведения ретроспективных игр. Все эти игры можно разделить условно на ролевые и неролевые.

Неролевые игры очень близки играм с внешними правилами, но они воссоздают историческое прошлое, и действие игры происходит в далекую эпоху. К таким играм относятся конкурсные ретроспективные игры, когда искусственно моделируется ситуация прошлого, в которой люди определенной эпохи "демонстрируют" свое мастерство, достижения, смекалку в определенном историческом контексте. Путем такой игровой ситуации учитель, с одной стороны, проверяет знания учащихся на конкурсной основе, с другой, дает возможность эти знания "применить" в условиях имитации далекого прошлого, тем самым углубляя и расширяя знания о нем. Соревновательный дух подобной игры "зажигает" ребят, и стремление к познанию истории практически становится беспредельным ради разрешения игровой ситуации.

Другой тип ретроспективной игры - это маршрутная игра или воображаемое путешествие (аналогичный термин - заочная экскурсия). Маршрутная игра - это особая форма урока, когда дети переносятся в прошлое и "путешествуют" по нему в определенной пространственной среде (прогулка по древнему городу, плавание по реке, полет на хронолете и др.). При этом учащиеся четко определяют географические контуры изучаемой исторической действительности. Они намечают собственный маршрут, придумывают остановки, фрагменты беседы (интервью) с людьми прошлого, которые им "попадаются" в путешествии.

В полном смысле этого слова в маршрутных и конкурсных играх нет явных ролей, хотя они могут быть в ряде случаев. Тогда игра носит двойственный характер и является ролевой и конкурсной одновременно. Собственно ролевые игры ретроспективного характера основаны на разыгрывании ролей - участников исторических событий в условиях воображаемой ситуации прошлого. Они делятся также на подвиды.

Один из подвидов ролевой игры - театрализованное представление. Оно имеет четко обозначенный и прописанный сценарий, по которому и разыгрывается, как на сцене театра, действие. Оно воссоздает различные образы и картины прошлого. Все атрибуты театральной постановки, включая декорации, костюмы актеров, должны иметь место. Смысл такой игры для школьников заключается не только в "оживлении картин" прошлых эпох, но и в последующем обсуждении этих сцен всем классом. Здесь важны "ассоциации", когда дети распознают время и место действия, исторические явления и представителей социальных слоев по действиям героев представления.

Другим подвидом ролевых игр является театрализованная игра, где в моделируемой ситуации тексты персонажей не прописаны заранее, а их составляют сами дети. Главным ее отличием от предыдущего подвида является более широкая импровизация участников игры (они же и очевидцы событий прошлого). Однако, в данной игре театрализованное действие все же приближено к той эпохе, о которой идет речь и которая изучается. Модернизация прошлого здесь не допускается. Поэтому необходима общая программа или сценарий игры, которого придерживаются все участники. Данный тип игры отличается от театрализованного представления и большим количеством вовлеченных в игру участников. Актером здесь может стать любой ученик.

Третий подвид ролевой игры - проблемно-дискуссионная игра. В ее основе лежит воображаемая ситуация в прошлом, но при этом все действие строится не по сценарию, а вокруг обсуждения важного вопроса или проблемы. В игре предполагается спор участников, учитель сводит свою роль к минимуму, ставит проблему и промежуточные вопросы, распределяет роли участников. Ученики же в этой игре призваны решить проблему с позиций своих персонажей, причем заранее неизвестен результат решения данного вопроса. В итоге игры может быть принято несколько решений или не принято вовсе, но здесь важно "движение" каждого ученика в разработке проблемы.

Последний подвид приближает нас к промежуточному типу игры, которую методисты называют деловой игрой с элементами ретроспективности. Игра такого рода может сочетать в себе различных участников: современников, очевидцев событий, которые "встречаются" для обсуждения важных вопросов и "дознания" прошлого с потомками. Очевидцы исторического события могут в этой игре "принять" участие в современных формах общения людей - судах, съездах, митингах, клубах путешественников и телемостах и др. Современная ситуация с участниками событий может быть смоделирована и с частичной реконструкцией и отдельными сюжетами прошлого (по типу следственного эксперимента в судебной практике). Такая модернизация исторической действительности может быть оправдана в ряде случаев, ибо выполняет оценивающую и воссоздающую роль одновременно, что называется, "в одном флаконе". Учитель вынужден комплектовать на таких уроках разные задачи обучения, не имея достаточного количества часов на реконструкцию и оценку прошлого.

Приведенная выше классификация исторических игр основана по меньшей мере на трех критериях - характере ролей участников (очевидцы или наши современники), условиях воображаемой ситуации на занятиях (тогда или сейчас), жесткости сценария (программы) и степени импровизации детей в игре.

Классификаций дидактических игр по истории существует множество. Мне наиболее близка классификация, предложенная кандидатом педагогических наук М.В. Коротковой (см.схему1).

Практика показывает, что игра на уроке - дело серьезное. Методически верно организованная игра требует много времени для подготовки, максимальной активности учеников в деятельности не только на уровне воспроизведения и преобразования, но и на уровне творческого поиска, способствует сотрудничеству учителя и учащихся в процессе обучения.

Обратимся к вопросу об участниках игры и их стационарной роли в различного рода игровых занятиях, затем рассмотрим ход моделируемой игровой ситуации и ее раскручивание. Учитель истории может выступать в игре в следующих игровых ипостасях: 1) инструктора, который сводит свою роль к минимуму - объяснению правил игры и последствий игровых действий; 2) судьи-рефери, который поддерживает ход игры, контролирует соблюдение игровых правил, оценивает деятельность ребят; 3) тренера -который дает задания, делает подсказки, оказывает помощь по ходу игры, подбадривает детей и поддерживает игровую ситуацию; 4) председателя-ведущего, который дает импульс к игре и регулирует весь ход игры, в своих руках держит все игровые действия участников, подводит итоги и сопоставляет моделируемую ситуацию с реальной обстановкой .

Учащиеся в игре выступают в следующих ролях: актеры, зрители, эксперты. Актеры принимают участие в сценах, проговаривают тексты ролей. Зрители изучают дополнительную литературу, выполняют задания и принимают участие в обсуждении. Эксперты анализируют игру и каждого участника в отдельности, сравнивают моделируемую ситуацию с реальной.

Актеры воссоздают в процессе игры образ созданного в их сознании персонажа, осуществляют осознанные и целенаправленные игровые действия в соответствии с целью игры, ее сюжетной линией и содержанием роли. Актеры взаимодействуют со зрителями, отвечают на вопросы и защищают свою позицию. Главная их задача - достоверно и эмоционально передать содержание изображаемого ими образа. Нередко они сопереживают своему герою.

Зрители осмысливают игровую задачу и сюжетную линию игры, выражают свое отношение к происходящему с помощью мимики, жестов, реплик, вопросов, смеха. В процессе разыгрывания ситуации зрители формулируют свою позицию по отношению к героям игры, соотносят увиденные образы с собственной системой ценностей, "вживаются" в игровой контекст и мысленно создают свой собственный план игры, ставят себя на место актеров.

Эксперты оценивают создаваемые в игре образы - содержание роли, ее убедительность, достоверность, артистические способности и творчество исполнителей. В задачу экспертов входит очень сложная задача - проанализировать и сам процесс игры, ее результативность, поэтому по ходу они делают записи, создают карточки анализа. В конце игры они выступают с результатами, отмечают наиболее и наименее удачные моменты, выступления, реплики, выставляют оценки участникам. При анализе игры эксперты обращают внимание на игровое поведение персонажей, адекватность реакции зрителей, анализ деятельности ведущего, увлекательность и занимательность всего хода игры.

2.2 Главная задача любого учителя - добиться, чтобы у детей не пропал интерес к предмету, чтобы предлагаемый ученику материал был доступен по трудности. Большую помощь в решении данных вопросов оказывает игра. Ее использование дает хорошие результаты, повышает интерес детей к уроку, позволяет сконцентрировать внимание на самом главном.

На уроках я очень часто стараюсь применять игры. Конечно, не все уроки можно провести с помощью игры. Мне могут возразить многие учителя, например, математики, физики, что здесь не до веселья и нужен серьезный настрой и серьезная работа. Однако, где это возможно, необходимо разнообразить уроки с помощью игр. В последнее время, на уроках, очень часто приходится слышать от учеников «А давайте лучше поиграем!». Так почему же «лучше поиграем?»
Во-первых, наверное, потому, что ученику по своей природе нравится играть. Игра — это мощный стимул обучения, это разнообразная и сильная мотивация учения. В игре мотивов гораздо больше, чем в обычной учебной деятельности. Л. П. Борзова, исследуя мотивы участия школьников в играх на уроках истории, отмечает: «Некоторые подростки участвуют в играх, чтобы реализовать свои потенциальные возможности и способности, не находящие выхода в других видах учебной деятельности. Другие — чтобы получить высокую оценку, третьи - чтобы показать себя перед коллективом, четвёртые решают свои коммуникативные проблемы и т.п.».

Во-вторых, уникальная особенность игры состоит в том, что она позволяет расширить границы собственной жизни ребенка, вообразить то, чего он не видел.

В-третьих, в игре возможно вовлечение каждого в активную работу, эта форма урока противостоит пассивному слушанию или чтению. Игра эмоциональна по своей природе и потому способна даже самую сухую информацию оживить, сделать яркой и запоминающейся. Порой, в процессе игры некоторых детей узнаешь с другой стороны, раскрываются скрытые таланты, застенчивые дети проявляют незаурядные способности, пассивный ребёнок способен выполнить такой объём работы, какой ему совершенно недоступен в обычной учебной ситуации.

В- четвёртых, мы знаем, что дети энергичны и подвижны и невозможно заставить их «тихо посидеть» в течение всего урока. И поэтому всю неисчерпаемую энергию можно направить в нужное русло. Таким образом, совместив полезное с приятным. А. Я. Гуревич справедливо заметил, что: «Умело организованная игра позволяет задействовать в учебных целях энергию, которую школьники расходуют на «подпольную» игровую деятельность. Последняя, ведётся на уроках всех (без исключения!) преподавателей…
В-пятых, игра положительно влияет на формирование познавательных интересов. Она содействует развитию таких качеств как самостоятельность, инициативность. На уроках дети активны, увлеченно работают, помогают друг другу, внимательно слушают своих товарищей. Факторы, сопровождающие игру - интерес, чувство удовольствия, радость. Все это вместе взятое, несомненно, облегчает обучение.

Кроме этого, игра создаёт особые условия, при которых развивается творчество учащихся. Суть этих условий заключается в общении на равных, где исчезает робость, возникает ощущение — «я тоже могу», т.е. в игре происходит внутреннее раскрепощение. Для обучения очень важно то, что игра является классическим способом обучения действием. В ней органично заложена познавательная задача и осуществляется самостоятельный поиск знаний. «Овладение знаниями в игре — новое, уникальное условие сплачивания сверстников, условие обретения интереса и уважения друг к другу, а по ходу - и обретение себя», таким образом, помимо всего прочего, в игре происходит и огромная воспитательная работа.
Практика показывает, что уроки истории с использованием игр, делают увлекательным учебный процесс, способствуют появлению активного познавательного интереса школьников. «На таких занятиях складывается особая атмосфера, где есть элементы творчества и свободного выбора. Развивается умение работать в группе: её победа зависит от личных усилий каждого. Достаточно часто это требует от ученика преодоления собственной застенчивости и нерешительности, неверия в свои силы». Таким образом, реализуется принцип развития, который выражается не только в развитии интеллекта, но и в обогащении эмоциональной сферы и становлении волевых качеств личности, формировании адекватной самооценки.
Игра на уроке истории - активная форма учебного занятия, в ходе которой моделируется определённая ситуация прошлого или настоящего. Игровое состояние, возникающее у школьников в ходе игрового урока - специфическое, эмоциональное отношение к исторической действительности. Ученики заполняют «безлюдную» историю персонажами, которые они сами же и изображают в исторических играх разного типа.

Через понимание мыслей, чувств и поступков героев, которых учащиеся изображают в игре, школьники моделируют историческую реальность. При этом знания, приобретаемые в игре, становятся для каждого ученика личностно значимыми, эмоционально окрашенными, что помогает ему глубже понять, лучше «почувствовать» изучаемую историческую эпоху.
Игра на уроке истории создает условия для того, чтобы учащиеся могли вообразить то, чего в их непосредственном жизненном опыте не было. Проигрывание какой-либо роли раскрепощает ребёнка, что создаёт условия для развития творческой личности.
«Исторические игры полнофункциональны. Они очень гармонично объединяют фактический и теоретический материал, обычное восприятие информации и творческую работу, эмоциональный и логический способы восприятия - словом, заставляют активно функционировать разные уровни познавательной деятельности учащихся».

Естественно, такая трудная задача требует от ученика мобилизации всех умений, побуждает осваивать новые и углублять полученные знания, расширять кругозор, а самое главное, заставляет овладевать целым комплексом важных умений, в первую очередь - коммуникативных. Так же исторические игры развивают способности школьников к критическому восприятию окружающей действительности и сопереживанию.
Конечно, легче всего просто провести урок в форме лекции, но это для детей очень скучно, хотя и самый легкий вариант. Многие учителя считают, что игра требует больших усилий и подготовки, что дети после игры долго не могут «придти в себя». Лично я так не считаю. Вот несколько правил, которых я придерживаюсь при проведении игр:

учитываю возрастные особенности.

стараюсь вовлечь в игру всех детей без исключения.

не провожу специальной подготовки, репетиций, не требую от детей заучивания текста.

И если проводить игры не сложные и, что самое главное, периодически, то дети легко привыкают к этому и затем без особых усилий могут сконцентрироваться после игры.
Конечно же, игра - это не единственное средство повышения интереса к предмету, это одно из средств. Мы знаем, что на уроке можно использовать и технические средства обучения (в наше время это не проблема!), и учебник; проводить уроки в форме диспутов, дискуссий, лекций и т.д. Однако известно, что при использовании игры на уроках усвояемость материала учащимися повышается от 50 до 100 %. Эффект поразительный! Наверное, поэтому дети говорят: «А давайте лучше поиграем!»

Класс: 5
Предмет: история
Тема урока: «Религия древних греков» см.Приложение

Ролевая игра

Ролевая игра—это форма организации учебной деятельности, при которой каждый ученик выступает в роли участника событий прошлого. История --специфическая наука, ее содержание нельзя пронаблюдать, невозможно стать участником событий, которые давно прошли. Ролевая игра на уроке- не что иное, как «создание нереальных ситуаций» (Годер).

Изучить, повторить, закрепить или обобщить материал.

Проверить степень овладения теми или иными общеучебными или специальными умениями и навыками.

Формировать коммуникативные навыки путем работы в группах.

Способствовать раскрытию творческих способностей учащихся, дать возможность проявить себя каждому.

Положительный эффект:

В процессе подготовки и в ходе самой игры углубляются исторические знания учащихся, расширяется круг источников постижения истории.

Приобретаемые знания становятся личностно-значимыми

Эмоционально-окрашенными, так как ученик побывал в роли участника событий прошлого.

Игровая форма работы создает определенный настрой, который обостряет мыслительную деятельность учащихся.

Создается атмосфера раскованности, свободы мышления, мнения ученика и учителя становятся равнозначными, так как сам учитель оказывается в роли зрителя.

Коллективная работа помогает выработать чувства взаимопомощи, поддержки, лучше узнать друг друга, выявить лидеров в коллективе.

Коллективная работа позволяет научить деловому общению, дать опыт публичных выступлений.

Ролевая игра дает возможность отличиться ученику, не обладающему хорошими знаниями, преодолеть ему внутреннюю боязнь замечаний учителя и товарищей по классу.

Для учителя такие формы работы дают возможность накопить наглядный материал для последующих уроков.

Какие роли могут играть учащиеся?

Реально существовавшее лицо (король, князь, путешественник, руководитель восстания, полководец, политический деятель и др.)

Вымышленный персонаж, типичный представитель эпохи (крестьянин, феодал, воин, торговец и др.)

Подготовка:

Планирование игры.

Работа с учащимися:

сообщение темы, даты проведения ролевой игры,

распределение ролей и заданий,

разбивка на группы, по необходимости - выборы жюри, ведущих,

знакомство с планом игры,

объяснение целей и ожидаемых результатов,

форма представления материала,

дополнительная литература,

по необходимости - консультации, репетиции,

изготовление необходимых дидактических материалов,

сообщение о контроле знаний.

Варианты контроля знаний:

Оценка за работу на уроке, т.е. непосредственное участие в игре в работе своей группы.

Оценка за подготовку к игре дома (рисунок, схема, костюм, кроссворд, сообщение и др.)

Работа в тетради по ходу игры (запись выступлений других учащихся, таблица, ключевые слова и др.)

На следующем уроке - проверочная работа, тест, исторический диктант и др.

Ход игры:

Организационный момент.

Ролевая игра.

Рефлексия: устный анализ в конце урока, анкета, заметка в школьную газету, выставка творческих заданий и др. Игра должна стать не просто упражнением, но и познавательным опытом, поэтому в конце урока необходимо закрепить цель и познавательную ценность занятия, обсудить и оценить сам процесс и его результаты, наметить перспективу.

Приемы, которые могут быть использованы в ходе ролевой игры:

Персонификация - реально существовавшее лицо участвует в игре как помощник учителя, консультант, член жюри и др.
Примеры. Урок «Древневавилонское царство». Ученик-Хаммурапи - оценивает ситуации с позиций своих законов.
Урок повторения «Древний Египет». Жюри-жрецы оценивают деятельность групп воинов, земледельцев, писцов т др.

Интервью - ученики задают вопросы представителю другой исторической эпохи.
Путешествие - проверка картографических навыков.

Историческое письмо или телеграмма. Узнай, кто мог быть автором. Исторический документ. Узнай автора. О каком событии идет речь?

Рассказ-защита (герб, город, памятник культуры и др.).

Текст с ошибками или пропусками. Такие тексты составляются так, чтобы можно было легко определить, о каком именно событии идет речь. Ошибки здесь могут быть в значимых явлениях, хорошо известных, а так же неточности, касающиеся мелких фактов. Это задание проверяет не только память, но и внимание. Использую тексты из книги И. А.Федорчук «Интеллектуальные игры для школьников. История». Если не все ошибки будут найдены, наиболее сильный ученик в роли персонажа эпохи, может обратиться к обучающимся с вопросами, пожеланиями.

Кроссворды, загадки-рифмовки, кричалки и т.д.

Театрализованная игра

Театрализация - использование средств театра в педагогическом процессе. Театрализованная игра, элементы театрализации являются гармоничным сочетанием театрального искусства (условность атрибутов, особенности произношения речей) с педагогическим процессом по своим целям и принципам построения (коллективность, распределение ролей, необходимость педагогического руководства). Однако, словосочетание «театр на уроке» часто пугает учителей, так как ассоциируется с массой декораций, костюмов, репетиций. Поэтому лучше использовать термин «элементы театрализации». Урок ни в коем случае нельзя подменять развлекательной постановкой, а в полной мере использовать средства театра можно на факультативе, в историческом кружке, школьном театре.

Требования, применяемые к театрализованной игре:

Психологические: игра должна обладать значимостью для каждого ученика, то есть должна быть мотивирована; обстановка, в которой происходит игровое действие, должна располагать к общению в атмосфере дружелюбия, взаимопонимания и сотрудничества

Педагогические: игровое действие должно опираться на знания, умения, навыки, приобретенные ранее на уроках; цель игры должна определяться в соответствии с задачами учебного процесса; участники игры должны быть обеспечены соответствующим методическим материалом, документацией и т.п.; игра эффективна лишь в сочетании с другими (неигровыми) методами и средствами обучения и не должна быть преобладающей (подавляющей) в учебном процессе.

Приемы использования элементов театрализации на уроке (любой тип урока):

Персонификация - реально живший исторический персонаж участвует в уроке как помощник учителя (консультант, экскурсовод и др.) Урок «Александрия Египетская», экскурсовод - Александр Македонский.

«Кто я?» Ученик в костюме какого-то персонажа рассказывает о нем. Учащиеся угадывают, кто он. Урок «Религия древних греков». «Благодаря мне жилища людей стали светлыми в самые темные вечера. Я помог им побороть зимнюю стужу. За что же царь богов так жестоко наказал меня?» (Прометей). Урок «Поэма Гомера «Илиада». «Завтра мой поединок с вождем троянцев Гектором. Я готов сражаться. Только бы стрела или копье моего врага не попали мне в пятку» (Ахиллес).

Выступление исторического лица (речь, программа, законы и др.) Урок «Греко-персидские войны». Речь Фемистокла перед Саламинской битвой: «Спартанские военачальники считают, что нужно отвести флот к Пелопоннесу. Они хотят защитить Спарту, но кто тогда защитит афинян? Наш город уже разграблен и разрушен персами. Я думаю, мы должны дать бой именно здесь в узком Саламинском проливе. Мы, эллины, знаем здесь каждый подводный камень, где мелко, где глубоко, изучили каждое подводное течение, направления всех ветров. Персы же совсем не знакомы с этим проливом. Наши триеры гораздо меньше по размеру, чем тяжелые и неповоротливые персидские корабли. Триера неглубоко сидит в воде, она легко пройдет среди скал и мелей. А тяжелые персидские корабли разобъются о подводные камни или сядут на мель. Саламинский пролив - лучшее место для боя с персами.» После речи Фемистокла учащиеся отвечают на вопросы: Почему Фемистокл так уверен в победе? Приведите его аргументы.

Историческая сценка - небольшое представление - способ передачи учащимся исторической информации посредством ролевого исполнения по заранее составленному сценарию с применением театральных атрибутов.

Подготовка: написание сценария, распределение ролей, подготовка костюмов и реквизита, репетиции.

Примеры ролевых и театрализованных игр, применяемых на уроках истории в собственной практике учителя.

Театрализованные игры-это маленькие пьесы, разыгрываемые учениками, в основном импровизированные. Цель игр: оживить исторические события, повысить понимание ситуации, вызвать сопереживание и эмоции. Мною разработана серия театрализованных игр « Спектакль без репетиций». На подготовительном этапе дети получают роли, изучают биографии своих героев, их характеры. На уроке им предстоит действовать в предлагаемых обстоятельствах, они не знают сюжета заранее. Поэтому уроки-импровизации проходят по-разному в разных классах, с неожиданными поворотами, своеобразными финалами. На уроках в 5 классе «Демократия в Афинах», «Религия древних греков» в соответствии с сюжетом дети пытаются решить проблему, дать совет, ссорятся, пытаются выйти из трудной ситуации осуждают своих героев и сочувствуют им. Интересно то, что предлагаемые обстоятельства могут быть разные: пир богов на Олимпе, народное собрание, заседание герусии в Спарте. Конфликты сюжетных линий тоже разные. Такие приемы драматизации полезны, т.к. дети учатся самостоятельно мыслить, интерпретировать исторические факты, взаимодействовать друг с другом, находить нестандартное решение проблемы. Они направлены против автоматизма, им свойственны неожиданность и парадоксальность. В ходе игры обучающиеся, собрав заранее материал о своих героях, поняв логику их действий, играют в рамках заданной ситуации и заданной роли, переживают ситуацию, ищут ответы на вопросы. Здесь очень важно, чтобы в основе исторического сюжета был конфликт, это поддерживает активность учеников, приводит к нестандартным мыслям и поступкам.

Ролевые игры предполагают перевоплощение, например, в журналистов, экскурсоводов, съемочную группу. Здесь правила игры, сюжет определены заранее, игра требует серьезной подготовки, умения пользоваться специальной литературой, понятийным аппаратом. Группа учащихся, исполняющая роль «экскурсантов-иностранцев», заранее готовит каверзные вопросы. Поэтому игра проходит в режиме соревнования, с большой активностью учеников.

Эффективным игровым приемом, не сложным для учащихся, является прием «Оживи картину». Учащиеся озвучивают типичных персонажей эпох. Для этого им необходимо представить историю персонажа, осмыслить черты и особенности времени. Если ученик добавил что-то свое, не соответствующее духу времени, он должен обосновать почему.

Кроме ролевых и театрализованных использую на уроках и другие виды игр.

Игры-конкурсы. Игра может использоваться как фрагмент урока в режиме соревнования: «Дуэль с указками» (у карты), «Кроссворд без поля», «Зашифрованная телеграмма», «Исторический аукцион». Вызывают интерес старые игры с новой «начинкой»: «Третий лишний», «Крестики-нолики» (поставить свой значок ученик может в том случае, если он ответит на вопрос), «Найди клад» (работа с фрагментом исторической карты без единой надписи), «Где мы были, мы не скажем, а что делали - покажем», «Поле чудес».

Часто на уроках в 5классах использую загадки-рифмовки. Пример рифмовок в пятом классе на уроке «Искусство Древнего Египта»

И опора, и украшение

Не богов, а людей творение,

И стройна она, и многотонна

Называется это… (Колонна).

То цветок, а то папирус

На стебле огромном вырос.

Трудилась мастеров артель

Вверху колонны… (Капитель).

Там лес колонн, там тайны мрак,

Туда не пустят просто так.

Века не превратили в пыль

Зал под названием… (Гипостиль)

Игры-конкурсы хорошо применять на итоговых уроках. Они помогают обобщить и закрепить изученный материал. Игра «Исторический марафон» помогает быстро и четко повторить в сжатой форме пройденный материал.

Очень важно, используя игровые методики, «не заиграться». Чтобы избежать такой опасности, необходимо всегда проводить черту между игрой и жизнью. В игре ученик говорит и действует от имени персонажа, т.е. необязательно, чтобы он считал правильным его образ мыслей и действия. В обсуждении он говорит то, что думает на самом деле. После игрового этапа обязательно нужно подвести итог, что получилось, что нового мы узнали на уроке, чьё выступление произвело впечатление, что не удалось, какой опыт можно использовать на других уроках. Очень важно на таких уроках творчества расставить акценты, подчеркнуть важные моменты, поставить перед учениками новые проблемы.

Приведу примеры некоторых игр, которые использую на уроках истории в 5 классах
«Играслов»
Этот вид работы очень нравится ребятам. Они активно включаются в поиски нужных слов, изучая не только материал учебника, но и дополнительную литературу. Ребята постоянно стараются продемонстрировать перед классом свои открытия, тем самым подталкивая одноклассников к новым поискам. Хорошие знания, расширение кругозора, творческая инициатива, стремление к самосовершенствованию, высокие оценки - чем не отличный результат активизации познавательной деятельности?
Вот несколько примеров:
По какому предлогу можно плавать? (По реке По в Италии.)
Какой дикий зверь является источником жизни многих поколений людей государств Передней Азии? (Река Тигр в Междуречье)
Игра «Разгадай-ка!» (составление и разгадывание шарад)
Шарада - род загадки: загадываемое слово разделяется на несколько частей с самостоятельным смыслом, и затем даётся описание смысла каждого из этих слов. Иногда в форме стихотворений или инсценировок. Этот вид работы нравится ребятам не меньше, чем игра слов. Я предлагаю им составлять шарады дома (в форме дополнительного творческого задания), на уроке во время соревнования команд (задание для команды соперников) и т. д. Часто прямо во время урока, по ходу повторения или даже изучения новой темы ребята сами придумывают шарады. Данный вид работы очень ценен тем, что развивает у ребят внимание, творческие способности, грамотность, учит их чётко и правильно давать определения словам, историческим понятиям и терминам,.
Вот несколько примеров:
Первое - деталь автомобиля, освещающая дорогу, второе - местоимение, целое - правитель Египта в древности, (Фара-он - фараон)
Первое - народ (в переводе с греческого), второе - прибор для укладки волос, целое - знаме¬нитый оратор Древней Греции, (Демос-фен - Демосфен)
Первое - название священной горы греков, второе - соединительный союз, третье - самая хвастливая буква алфавита, целое - город в Пелопоннесе, известный всей Греции. (Олимп-и-я -Олимпия)

Заключение

Для формирования у детей социальных качеств и нравственного самосознания нужно создавать соответствующие условия, организовывать и постоянно сохранять сферу их "личностных" отношений, стимулировать самодеятельность детей, свободу в установлении отношений друг с другом.
Но как это возможно? Через игровую деятельность, т.к. игра - это средство создания "детского общества".
Таким образом, важной задачей школы становится развитие у школьников умений самостоятельного разрешения проблем, самостоятельной оценки и отбора получаемой информации, социального взаимодействия и коммуникационной компетентности, готовности к самообразованию. Развить подобные умения поможет дидактическая игра, которая служит своеобразной практикой для использования знаний, полученных на уроке и во внеурочное время.
Занимаясь проблемой использования игр на уроках истории, мы пришли к следующим выводам:

Игра - это мощный стимул в обучении, это разнообразная и сильная мотивация. Посредством игры гораздо активнее и быстрее происходит возбуждение познавательного интереса отчасти потому, что человеку по своей природе нравится играть. Другой причиной является то, что мотивов в игре гораздо больше, чем у обычной учебной деятельности.

В игре активизируются психические процессы участников игровой деятельности: внимание, запоминание, интерес, восприятие, мышление.

Игра эмоциональна по своей природе и потому способна даже самую сухую информацию оживить и сделать яркой, запоминающейся.

В игре возможно вовлечение каждого ученика в активную работу, это форма, которая противостоит пассивному слушанию или чтению. В процессе игры интеллектуально пассивный ребёнок способен выполнять такой объём работы, какой ему совершенно недоступен в обычной учебной ситуации.

Игра создаёт особые условия, при которых может развиваться творчество. Суть этих условий заключается в общении "на равных", где исчезает робость, возникает ощущение - "я тоже могу", т.е. в игре происходит внутреннее раскрепощение. Для обучения важно, что игра является классическим способом обучения действием. В игре органично заложена познавательная задача. В игре ребёнок может осуществлять самостоятельный поиск знаний.

В игре также происходит воспитательная работа, что неоднократно рассматривалось в трудах многих ведущих педагогов. В игре же "именно овладение знаниями становится новым уникальным условием сплачиванием сверстников, условием приобретения интереса и уважения друг к другу, а по ходу - и "обретения себя" (В.М.Букатов)

В процессе написания работы были рассмотрены и изучены следующие вопросы:

Методика проведения игр на уроках истории:

Классификация исторических игр;

Методическая организация исторических игр;

Основные этапы исторической игры;

Таким образом, в данной работе были затронуты и детально проработаны вопросы, необходимые для раскрытия темы исследования.

Данная работа характеризуется достаточно глубоким изучением теоретических аспектов, научно обоснованным анализом с учетом изученного материала.

В заключение, хотелось бы привести слова Анатолия Гина:
"Идеальное управление - когда управления нет, а его функции выполняются. Каждый знает, что ему делать. И каждый делает, потому что хочет этого сам".
"Идеальная дидактика - это её отсутствие. Ученик сам стремится к знаниям так, что ничто не может ему помешать. Пусть гаснет свет - он будет читать при свечах".

Список литературы:

Борзова, Л. П. Игры на уроке истории: метод. пособие для учителя / Л. П. Борзова. - М. : ВЛАДОС-ПРЕСС, 2003. - 160 с. - (Б-ка учителя истории).

Букатов, В. М. Я иду на урок: хрестоматия игровых приемов обучения: книга для учителя / В. М. Букатов, А. П. Ершова. - М. : Первое сентября, 2002. - 224 с. : ил.

Васильева, Н. Психологическая готовность к самоопределению: деловая игра по выявлению интереса к изучаемым предметам. / Н. Васильева // Учитель - 2005. - № 4 - С.82 - 86.

Игры и занимательные задания по истории / авт.-сост. М. А. Субботина, И. Б. Горячева, Л. М. Добролюбова и др. - М. : Дрофа, 2003. - 336 с. : ил.

Капитонов, А. Н. Организационно-деятельностная игра в школе. / А. Н. Капитонов // Школьные технологии. - 200 - № 2 - С. 144.

Куприянов, Б. В. Организация и методика проведения игр с подростками: взрослые игры для детей: учеб. - метод. пособие / Б. В. Куприянов, М. И. Рожков, И. И. Фришман. - М. : ГИЦ ВЛАДОС, 2001.

Любимова, Т. Г. Развиваем творческую активность: игры и упражнения для детей и взрослых / Т. Г. Любимова. - Чебоксары: КЛИО, 1996. - 44 с.

Мандель, Б. Р. Сложные игры: принципы построения и способы построения: использование игры в педагогике / Б. Р. Мандель // Народное образование. - 2006 - № 1 - С. 112 - 117.

Непомнящая, Н. И. Игра как творчество при реализации человеческих сущностных свойств в развитии ребенка. / Н. И. Непомнящая // Мир психологии. - 2006. - №1 - С. 133 - 141.

Селевко, Г. К. Современные образовательные технологии: учеб.пособие / Г. К. Селевко. - М.: Народное образование, 1998. - 256 с.

Сиденко, А. Игровой подход в обучении. / А. Сиденко // Народное образование. - 2000. - № 8. - С. 134.

Соловьева, Л. Активные методы обучения. / Л. Соловьева // Высшее образование в России. - 2004. - № 4. - С. 166-168.

Сорочкина, Е. Игра - дело серьезное, особенно если она ролевая. / Е. Сорочкина // Учительская газета. - 2004. - № 43. - С. 11.

Тендряков, М. В. Игра и расширение смыслового пространства (взаимопереходы игры и реальности). / М. В. Тендряков // Мир психологии. - 200. - № 3. - С. 113-121.

Фрумкина, Р. Что за термином? Игра. / Р. Фрумкина // Семья и школа. - 2005. - № 5. - С. 18.

Шмаков, С. А. Игры учащихся - феномен культуры / С. А. Шмаков. - М. : Новая школа, 1994. - 240 с.

Эльконин, Д. Б. Основная единица развернутой формы игровой деятельности. Социальная природа ролевой игры. / Д. Б. Эльконин // Мир психологии. - 2004. - № 1 - С. 60-68.

Ямалетдинова, Ф. « Шипел вечерний самовар»… : игра в процессе обучения. / Ф. Ямалетдинова // Учитель. - 1999 - №1.

Приложение1

Приложение 2

Тема урока:

«Религия древних греков» 5 класс всеобщая история учебник А.А.Вигасин, Г.И.Годер, И.С.Свенцицкая История древнего мира. Москва «Просвещение», 2012.

Место урока в теме: 5 урок в теме «Древнейшая Греция».

Цель

Формировать представления о религии древних греков через организацию деятельности по работе с ЭОР и другими источниками информации.

Задачи:

Образовательные - Обеспечить условия для усвоения учащимися знаний о культах основных древнегреческих богов и героев, познакомить учащихся с мифами о них;

Развивающие - развивать умение работать с картой, находить информацию в тексте. Продолжать формирование умений работать с текстом учебника и его иллюстрациями, выделять главное.

Воспитательные - способствовать интересу к изучению истории, развивать мировоззренческие позиции через осознание общей закономерности: религиозные верования возникли вследствие зависимости людей от сил природы; научить учащихся работать индивидуально и в группе, способствовать умению анализировать и оценивать результаты собственной деятельности.

Технологии и методы: ИКТ, системно-деятельностный подход, личностно-ориентированное обучение, проблемно-поисковый метод.

Тип урока : комбинированный, с точки зрения целеполагания - урок «открытия» нового знания.

Необходимое техническое оборудование: компьютер, медиапроектор, экран

Учебное оборудование: карта «Древняя Греция до середины V в. до н.э.)

Технологическая карта урока:

Этап урока

Название используемых ЭОР

(с указанием порядкового номера из Таблицы 2)

Деятельность учителя

Деятельность учащихся

Время

Организационный

Создание доброжелательного настроя, организация внимания.

Приветствие, проверка готовности к уроку.

Ответное приветствие

Проверка домашнего задания

СД «История древнего мира Кирилл и Мефодий»

№1. Поэмы Гомера

Актуализирует и комментирует опорные знания учащихся по теме «Поэмы Гомера «Илиада» и «Одиссея»

Тест по теме «Поэмы Гомера «Илиада» и «Одиссея».

Исправление ошибок в тексте - в тетради или по возможности с использованием компьютера - интерактивное задание.

Организует работу с ЭОР, предлагает учащимся вспомнить материал прошлого урока «Поэмы Гомера «Илиада» и «Одиссея», первичная проверка знаний

Записывают правильные ответы

Или вводят параметры с помощью клавиатуры и проверяют себя.

МотивацияАктуализация

В ходе решения проблемной задачи совместно с учащимися определяет тему и цель урока:

Известный философ Еврипид сказал:

На небе боги есть…Так говорят.

Нет! Нет! Их нет!

И у кого крупица

Хотя бы есть ума, не станет верить.

Как же так?! Мы же говорили с вами о том, что практически все люди верили в какие-то сверхъестественные силы. Так верили ли древние греки в богов? А сейчас все верят в бога?

На эти вопросы мы с Вами постараемся ответить в конце урока и ответы могут быть неоднозначными

Консультирует по правилам работы с ЭОР, предлагает работу в группах.

Помогает определиться с группами.

Группы рабочие (по 5-6 учеников)

Анализируют информацию

Делают выводы

Определяют тему и цель урока для себя

Предлагают пути решения проблемы

1.Познакомиться с материалом о богах

2.С ролью религии в жизни людей

Выбирают свой путь работы над проблемой (группу)

Открытие нового знания

№2.«Боги и герои Эллады»

№3. «Двенадцать подвигов Геракла». Мультфильм

Предлагает вместе поработать с ЭОР, чтобы получить общее представление о религии древних греков и начать заполнение таблицы «Боги древней Греции».

Раздает инструктивные карточки каждой группе.

Консультирует

Организует

Регулирует работу групп

ФРОНТАЛЬНАЯ РАБОТА (информационный модуль)

Читают и анализируют представленный материал и делают первые выводы о значении богов в жизни греков.

Записывают в тетрадь

ГРУППОВАЯ РАБОТА

(практический модуль):

работа с ЭОР «Боги и герои Эллады»-

1 группа - интерактивное задание «да» «нет».

2 группа: классификация информации (выделение позиций, связанных с влияние религии на жизнь людей)

Записи в тетради.

Работа с картой, выяснение места, где по мнению греков обитали олимпийские боги.

4 группа работа с ЭОР знакомство с мифами о богах и героях

Итоговая экспресс-диагностика результатов учащихся

№4. «Боги греков»

Организует

и координирует работу учащихся

демонстрирует ресурс с иллюстрациями богов

Фронтально

1 ученик за компьютером или 4 по порядку информация на экране.

Выступление представителей групп и демонстрация итогов, редактирование таблицы

Рефлексия

Решение задачи.

Никто не верит теперь, что на вершине Олимпа живут боги. От веры в олимпийских богов остались только легенды и мифы. Однако учёные и мы с вами изучаем мифы древних греков. Почему древние греки верили в существование олимпийских богов?

Почему сейчас люди не верят в них?

Объясните, почему учёные изучают легенды и мифы?

А сейчас люди верят в бога?

Координирует, делает акцент на то, что каждый ученик имеет право на собственное мнение, если сумеет его аргументировать.

Учащиеся предполагают, выдвигают свои версии ответов, оценивают свою работу на уроке и своих одноклассников

Анализ результатов.

Информация о домашнем задании

Написать сочинение «Так живут боги»

(написать о своем видении жизни на горе Олимп)

Предлагает задание для всех и по выбору.

Слушают, записывают, выбирают.

Приложение 3 к плану-конспекту урока

_____Религия древних греков_________

Таблица 2.

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ НА ДАННОМ УРОКЕ ЭОР

Название ресурса

Тип, вид ресурса

Форма предъявления информации (иллюстрация, презентация, видеофрагменты, тест, модель и т.д.)

Поэмы Гомера

«Боги и герои Эллады»

Двенадцать подвигов Геракла. Мультфильм

«Боги греков»

информационный

информационный

информационный

информационный

презентация

Презентация, аудио прослушивание

видеофрагмент

Кучерук И.В. Учебные игры как средство активизации познавательной деятельности учащихся на уроках истории. М, 1991 -С. 214

Содержание

Введение. 4

Глава I. Формирование познавательного интереса учащихся. 7

§1 Психолого-педагогические основы познавательного интереса. 7

§2 Познавательный интерес и пути его формирования. 10

2.1 Познавательный интерес, стадии его развития. 10

2.2 Условия формирования познавательного интереса. 16

2.3 Формирование познавательных интересов в обучении математике. 19

Глава II. Внеклассная работа по математике как средство развития познавательного интереса учащихся. 24

§1 Значение внеклассной работы по математике как средства развития познавательного интереса. 24

§2 Математическая игра как форма внеклассной работы по математике. 30

Глава III. Математическая игра как средство развития познавательного интереса учащихся. 34

§ 1 Психолого-педагогические основы математической игры.. 34

§ 2 Математические игры как средство развития познавательного интереса к математике. 38

2.1 Актуальность. 38

2.2 Цели, задачи, функции, требования математической игры.. 41

2.3 Виды математических игр. 44

2.4 Структура математической игры.. 63

2.5 Организационные этапы математической игры.. 65

2.6 Требования к подбору задач. 67

2.7 Требования к проведению математической игры.. 70

Глава IV. Опытное преподавание. 74

§1 Анкетирование учителей и учеников. 74

§2 Наблюдения, личный опыт. 80

Заключение. 85

Библиографический список. 86

Введение

Как известно, знания, полученные без интереса, не становятся полезными. Поэтому одной из труднейших и важнейших задач дидактики как была, так и остается проблема воспитания интереса к учению.

Познавательный интерес в трудах психолог и педагогов изучен достаточно тщательно. Но все-таки остаются не решенными некоторые вопросы. Главный из них – как вызвать устойчивый познавательный интерес.

С каждым годом дети все равнодушнее относятся к учебе. В частности понижается у учеников к такому предмету как математика. Этот предмет воспринимается учащимися как скучный и совсем не интересный. В связи с этим учителями ведется поиск эффективных форм и методов обучения математике, которые способствовали бы активизации учебной деятельности, формированию познавательного интереса.

Одна из возможностей развивать познавательный интерес учащихся к математике лежит в широком применении внеклассной работы по математике. Внеклассная работа по математике имеет мощный резерв для реализации такой задачи обучения, как повышение познавательного интереса, через все разнообразие форм ее проведения. Одной из таких форм является математическая игра.

Математические игры отличаются эмоциональностью, вызывают у учащихся положительное отношение к внеклассным занятиям по математике, а, следовательно, и к математике в целом; способствуют активизации учебной деятельности; обостряют интеллектуальные процессы и главное, способствуют формированию познавательного интереса к предмету. Но следует заметить, что математическая игра как форма внеклассной работы применяется довольно таки редко, в связи с трудностями организации и проведения. Таким образом, большие образовательные, контролирующие, воспитывающие возможности (в частности возможность развития познавательного интереса) применения математической игры во внеклассной работе по математике реализуются недостаточно.

А может ли математическая игра являться эффективным средством развития познавательного интереса учащихся к математике? В этом и заключается проблема данного исследования.

Исходя из этой проблемы, можно определить цель исследования – обосновать эффективность использования математической игры во внеклассной работе по математике для формирования и развития познавательного интереса у учащихся к математике.

Объектом исследования будет служить познавательный интерес , предметом математическая игра как форма внеклассной работы по математике .

Сформулируем гипотезу исследования : Использование математической игры во внеклассной работе по математике способствует развитию познавательного интереса у учащихся к математике .

Задачи :

1. Рассмотреть понятие познавательного интереса с различных точек зрения, стадии развития, условия его формирования;

2. Изучить пути формирования познавательного интереса при обучении математике;

3. Рассмотреть цели, задачи, формы организации внеклассной работы по математике как средства развития познавательного интереса;

4. Изучить математическую игру как форму внеклассной работы по математике;

5. Определить цели, задачи, условия проведения, компоненты, виды математических игр, требования к проведению и подбору задач;

6. На основе анализа методической, психолого-педагогической литературы, опроса учителей и учащихся, собственного опыта проведения математической игры обосновать необходимость применения математической игры на внеклассных занятиях по математике.

Для решения данных задач используются следующие методы :

1. Изучение методической, психолого-педагогической литературы по рассматриваемой теме;

2. Наблюдение за учащимися;

3. Анкетирование;

4. Опытно-экспериментальная работа.

Глава I. Формирование познавательного интереса учащихся

§1 Психолого-педагогические основы познавательного интереса

Сегодня нужен человек не только потребляющий знания, но и умеющий их добывать. Нестандартные ситуации наших дней требуют от нас широты интереса. Интерес - это реальная причина действий, ощущаемая человеком как особо важная. Он является одним из постоянных сильнодействующих мотивов деятельности. Интерес можно определить как положительное оценочное отношение субъекта к его деятельности.

Как сильное и очень значимое для человека образование, интерес имеет множество трактовок в своих психологических определениях, он рассматривается как:

o проявление его умственной и эмоциональной активности (С.Л.Рубинштейн);

o особый сплав эмоционально-волевых и интеллектуальных процессов, повышающих активность сознания и деятельности человека (А.А.Гордон);

o активное познавательное (В.Н. Мясинцев, В.Г. Иванов), эмоционально-познавательное (Н.Г.Морозова) отношение человека к миру;

o специфическое отношение личности к объекту, вызванное сознанием его жизненного значения и эмоциональной привлекательности (А.Г.Ковалев).

Этот перечень трактовок интереса в психологии далеко не полон, но и сказанное подтверждает, что наряду с различиями выступает и известная общность аспектов, направленных на раскрытие феномена интереса, - его связи с различными психическими процессами, из которых особенно часто выделяют эмоциональные, интеллектуальные, регулятивные (внимание, воля), его включенность в различные личностные образования.

Особый вид интереса - интерес к познаниям, или, как его принято теперь называть, познавательный интерес. Его область - познавательная деятельность, в процессе которой происходит овладение содержанием учебных предметов и необходимыми способами или умениями и навыками, при помощи которых ученик получает образование.

Проблема интереса как важнейшего стимула развития личности теперь все больше привлекает к себе внимание, как педагогов, так и психологов.

Интерес с психологической точки зрения, характеризуется подвижностью, изменчивостью, разнообразием оттенков и степеней развития. Большинство психологов относят интерес к категории направленностей, то есть к стремлениям личности к объекту или деятельности. Придавая особое значение познавательному интересу, психологи указывают на то, что под этим «интересом понимаются как интерес к содержанию, так и к процессу овладения знаниями».

С точки зрения С.Л.Рубинштейна и Б.Г.Ананьева психологические процессы, включенные в познавательный интерес, - это не сумма слагаемых, а особые связи, своеобразные взаимоотношения. Интерес – это «сплав» многих психических процессов, образующих особый тонус деятельности, особые состояния личности (радость от процесса учения, стремление углубиться в познание интересующего предмета, в познавательную деятельность, переживание неудач и волевые устремления к их преодолению).

Познавательный интерес играет в педагогическом процессе главную роль. И. В. Метельский определяет познавательный интерес следующим образом: «Интерес – это активная познавательная направленность, связанная с положительным эмоционально окрашенным отношением к изучению предмета с радостью познания, преодолению трудностей, созданием успеха, с самовыражением и утверждением развивающейся личности».

Г. И. Щукина, специально занимавшаяся исследованием познавательного интереса в педагогике, определяет его следующим образом: «познавательный интерес выступает перед нами как избирательная направленность личности, обращенная к области познания, к ее предметной стороне и самому процессу овладения знаниями». .

Познавательный интерес психологи и педагоги изучают с различных сторон, но любое исследование рассматривает как часть общей проблемы воспитания и развития. Сегодня проблема интереса всё шире исследуется в контексте разнообразной деятельности учащихся, что позволяет творчески работающим учителям, воспитателям успешно формировать и развивать интересы учащихся, обогащая личность, воспитывать активное отношение к жизни.

§2 Познавательный интерес и пути его формирования

2.1 Познавательный интерес, стадии его развития

Познавательный интерес - это избирательная направленность личности на предметы и явления окружающие действительность. Эта направленность характеризуется постоянным стремлением к познанию, к новым, более полным и глубоким знаниям. Лишь тогда, когда та или иная область науки, тот или иной учебный предмет представляются человеку важными, значительными, он с особым увлечением занимается ими, старается более глубоко и основательно изучить все стороны тех явлений, событий, которые связаны с интересующей его областью знаний. В противном случае интерес к предмету не может носить характера подлинной познавательной направленности: он может быть случайным, нестойким и поверхностным.

Систематически укрепляясь и развиваясь познавательный интерес становится основой положительного отношения к учению. Познавательный интерес носит поисковый характер. Под его влиянием у человека постоянно возникают вопросы, ответы на которые он сам постоянно и активно ищет. При этом поисковая деятельность школьника совершается с увлечением, он испытывает эмоциональный подъем, радость от удачи. Познавательный интерес положительно влияет не только на процесс и результат деятельности, но и на протекание психических процессов - мышления, воображения, памяти, внимания, которые под влиянием познавательного интереса приобретают особую активность и направленность.

Характерной особенностью познавательного интереса является и его волевая направленность. Познавательный интерес направлен не только на процесс познания, но и на результат его, а это всегда связано со стремлением к цели, с реализацией ее, преодолением трудностей, с волевым напряжением и усилием. Познавательный интерес – не враг волевого усилия, а верный его союзник. В познавательном интересе своеобразно взаимодействуют все важнейшие проявления личности.

Познавательный интерес - это один из важнейших мотивов учения школьников. Под влиянием познавательного интереса учебная работа даже у слабых учеников протекает более продуктивно.Этот мотив окрашивает эмоционально всю учебную деятельность подростка. В то же время он связан с другими мотивами (ответственностью перед родителями и коллективом и др.). Познавательный интерес как мотив учения побуждает ученика к самостоятельной деятельности, при наличии интереса процесс овладения знаниями становится более активным, творческим, что в свою очередь, влияет на укрепление интереса. Самостоятельное проникновение в новые области знания, преодоление трудностей вызывает чувство удовлетворения, гордости, успеха, то есть создает тот эмоциональный фон, который характерен для интереса.

Познавательный интерес при правильной педагогической и методической организации деятельности учащихся и систематической и целенаправленной воспитательной деятельности может и должен стать устойчивой чертой личности школьника и оказывает сильное влияние на его развитие. Как черта личности познавательный интерес проявляется во всех обстоятельствах, находит применение своей пытливости в любой обстановке, в любых условиях. Под влиянием интереса развивается мыслительная активность, которая выражается во множестве вопросов, с какими школьник, например, обращается к учителю, к родителям, взрослым, выясняя сущность интересующего его явления. Отыскание и чтение книг в интересующей области, выбор определенных форм внеклассной работы, способных удовлетворить его интерес, - все это формирует и развивает личность школьника.

Познавательный интерес выступает и как сильное средство обучения . Характеризуя интерес как средство обучения, следует оговориться, что интересное преподавание - это не развлекательное преподавание, насыщенное эффективными опытами, демонстрациями красочных пособий, занимательными задачами и рассказами и т. д., это даже не облегченное обучение, в котором все рассказано, разъяснено и ученику остается только запомнить. Интерес как средство обучения действует только тогда, когда на первый план выступают внутренние стимулы, способные удержать вспышки интереса, возникающие при внешних воздействиях. Новизна, необычность, неожиданность, странность, несоответствие ранее изученному, все эти особенности способны не только вызвать мгновенный интерес, но и пробудить эмоции, порождающие желание изучить материал более глубоко, т. е. содействовать устойчивости интереса. Классическая педагогика прошлого утверждала – ” Смертельный грех учителя – быть скучным”. Когда ребенок занимается из-под палки, он доставляет учителю массу хлопот и огорчений, когда же дети занимаются с охотой, то дело идет совсем по-другому.

Активизация познавательной деятельности ученика без развития его познавательного интереса не только трудна, но практически и невозможна. Вот почему в процессе обучения необходимо систематически возбуждать, развивать и укреплять познавательный интерес учащихся и как важный мотив учения, и как стойкую черту личности, и как мощное средство воспитывающего обучения, повышения его качества.

У школьников одного и того же класса познавательный интерес может иметь разный уровень своего развития и характер проявлений, обусловленных различным опытом, особыми путями индивидуального развития.

Элементарным уровнем познавательного интереса можно считать открытый, непосредственный интерес к новым фактам, занимательным явлениям, которые фигурируют в информации, полученной учеником на уроке.На этой стадии – стадии любопытства ученик довольствуется только занимательностью того или иного предмета, той или иной области знаний. На этой ступени у учащихся еще не замечается стремления к познанию сущности.

Более высоким уровнем его является интерес к познаниям существенных свойств предметов и явлений, составляющих более глубокую часто невидимую их внутреннюю суть. Этот уровень, называемый стадией любознательности , требует поиска, догадки, активного оперирования имеющимися знаниями, приобретенными способами. Стадия любознательности характеризуется стремлением проникнуть за пределы видимого на ступени развития познавательного интереса. Школьнику свойственны эмоции удивления, радости познания. Ученик, включаясь по собственному побуждению в деятельность, наталкивается на трудности и сам начинает искать причины неудачи. Любознательность, становясь устойчивой чертой характера, представляет большую ценность для развития личности. Эта стадия, как показали исследования, характерны для младших подростков, которые еще не имеют достаточного теоретического багажа, чтобы проникнуть в суть и в глубь вещей, но уже оторвались от элементарных конкретных действий и становятся способными к самостоятельному дедуктивному подходу в изучении.

Еще более высокий уровень познавательного интереса составляет интерес школьника к причино-следственным связям, к выявлению закономерностей, к установлению общих принципов явлений, действующих в различных условиях. Этот интерес характеризует собой подлинно познавательный интерес . Стадия познавательного интереса обычно связывается со стремлением ученика к разрешению проблемного вопроса. В центре внимания школьника становится не готовый материал учебного предмета и не сама по себе деятельность, а вопрос, проблема. Познавательный интерес, как особая направленность личности на познание окружающей действительности, характеризуется непрерывным поступательным движением, содействующим переходу школьника от незнания к знанию, от менее полного и глубокого к более полному и глубокому проникновению в сущность явлений. Для

познавательного интереса характерно напряжение мысли, усиления воли, проявление чувств, ведущие к преодолению трудностей в решении задач, к активным поискам ответа на проблемные вопросы.

Существует так же стадия теоретического интереса , связанная не только стремлением к познанию закономерностей, теоретических основ, но и с применением их в практике, появляется на определенном этапе развития личности и ее мировоззрения. Эта ступень характеризуется активным воздействием на мир, направленным на его переустройство, требует от личности не только глубоких знаний, она связана с формированием стойких ее убеждений. На эту ступень в состоянии подняться лишь старшие школьники, имеющие теоретическую основу для формирования научных взглядов, правильного миропонимания.

Эти ступени развития познавательного интереса: любопытство, любознательность, познавательный интерес, теоретический интерес помогает нам более или менее точно определить отношение ученика к предмету и степень влияния его на личность. И хотя эти стадии не все принимают и выделяются они чисто условно остаются общепризнанными.

Было бы ошибкой, однако, рассматривать указанные ступени познавательного интереса изолированно друг от друга. В реальном процессе они представляют собой сложнейшие сочетания и взаимосвязи.

Состояние заинтересованности, которое обнаруживает ученик на том или ином учебном занятии, проявляющееся под влиянием самых разнообразных сторон обучения (занимательность, расположение к учителю, удачный ответ, поднявший его престиж перед коллективом и т. д.), может быть временным, преходящим, не оставляющим глубокого следа в развитии личности ученика, в отношении школьника к учению. Но в условиях высокого уровня обучения, при целенаправленной работе учителя по формированию познавательных интересов это временное состояние заинтересованности может быть использовано, как отправная точка для развития пытливости, любознательности, стремления во всем руководствоваться научным подходом при изучении различных учебных предметов (искать и находить доказательства, читать дополнительную литературу, интересоваться последними научными открытиями и т. д.).

Быть внимательным к каждому ребенку. Уметь увидеть, подметить у ученика малейшую искру интереса к какой-либо стороне учебной работы, создавать все условия для того, чтобы разжечь ее и превратить в подлинный интерес к науке, к знаниям - в этом задача учителя, формирующего познавательный интерес.

Таким образом, познавательный интерес может рассматриваться как один из важнейших мотивов учения, как устойчивая черта личности и как сильное средство обучения. В процессе же обучения важно развивать и укреплять познавательный интерес и как мотив учения, и как черту личности, и как средство обучения. При этом нужно помнить, что существуют разные стадии развития познавательного интереса, знать их особенности, признаки. А для того чтобы учитель мог формировать познавательный интерес в какой-либо деятельности он должен знать основные формы и пути активизации познавательного интереса, учесть все необходимые для этого условия.

2.2 Условия формирования познавательного интереса

Опираясь на огромный опыт прошлого, на специальные исследования и практику современного опыта, можно говорить об условиях, соблюдение которых способствует формированию, развитию и укреплению познавательного интереса учащихся:

1. Первое условие состоит в том чтобы, осуществлять максимальную опору на активную мыслительную деятельность учащихся . Главной почвой для развития познавательных сил и возможностей учащихся, как и для развития, подлинно познавательного интереса, являются ситуации решения познавательных задач, ситуации активного поиска, догадок, размышления, ситуации мыслительного напряжения, ситуации противоречивости суждений, столкновений различных позиций, в которых необходимо разобраться самому, принять решение, встать на определённую точку зрения.

2. Второе условие предполагает обеспечение формирования познавательных интересов и личности в целом. Оно состоит в том, чтобы вести учебный процесс на оптимальном уровне развития учащихся . Путь обобщений, отыскание закономерностей, которым подчиняются видимые явления и процессы, - это путь, который в освещении множества запросов и разделов науки способствует более высокому уровню обучения и усвоения, так как опирается на максимальный уровень развития школьника. Именно это условие и обеспечивает укрепление и углубление познавательного интереса на основе того, что обучение систематически и оптимально совершенствует деятельность познания, её способов, её умений. В реальном процессе обучения учителю приходится иметь дело с тем, чтобы постоянно обучать учащихся множеству умений и навыков. При всём разнообразии предметных умений выделяются общие, которыми учение может руководствоваться вне зависимости от содержания обучения, такие, например, как умение читать книгу (работать с книгой), анализировать и обобщать, умение систематизировать учебный материал, выделять единственное, основное, логически строить ответ, приводить доказательства и т.д. Эти обобщённые умения основаны на комплексе эмоциональных регулярных процессов. Они и составляют те способы познавательной деятельности, которые позволяют легко, мобильно, в различных условиях пользоваться знаниями и за счёт прежних приобретать новые.

3. Эмоциональная атмосфера обучения, положительный эмоциональный тонус учебного процесса - третье важное условие. Благополучная эмоциональная атмосфера обучения и учения сопряжена с двумя главными источниками развития школьника: с деятельностью и общением, которые рождают многозначные отношения и создают тонус личного настроения ученика. Оба эти источника не изолированы друг от друга, они всё время переплетаются в учебном процессе, и вместе с тем стимулы, поступающие от них, различны, и различно влияние их на познавательную деятельность и интерес к знаниям, другие - опосредованно. Благополучная атмосфера учения приносит ученику желание быть умнее, лучше и догадливей. Именно это стремление ученика подняться над тем, что уже достигнуто, утверждает чувство собственного достоинства, приносит ему при успешной деятельности глубочайшее удовлетворение, хорошее настроение, при котором работается скорее, быстрее и продуктивней. Создание благоприятной эмоциональной атмосферы познавательной деятельности учащихся - важнейшее условие формирования познавательного интереса и развития личности ученика в учебном процессе. Это условие связывает весь комплекс функций обучения - образовательной, развивающей, воспитывающей и оказывает непосредственное и опосредованное влияние на интерес. Из него вытекает и четвёртое важное условие, обеспечивающее благотворное влияние на интерес и на личность в целом.

4. Четвертым условием является благоприятное общение в учебном процессе . Эта группа условий отношения «ученик - учитель», «ученик - родители и близкие», «ученик - коллектив». К этому следует добавить некоторые индивидуальные особенности самого ученика, переживание успеха и неуспеха, его склонности, наличие других сильных интересов и многое другое в психологии ребенка. Каждое из этих отношений может повлиять на заинтересованность ученика, как в положительном, так и в отрицательном направлении. Всеми этими отношениями и, прежде всего отношением «учитель - ученик» управляет учитель. Его требовательное и в тоже время заботливое отношение к ученику, его увлеченность предметом и стремление подчеркнуть его огромное значение - определяет отношение ученика к изучению данного предмета. К этой группе условий следует способности ученика, а также успех, достигнутый им в результате упорства и настойчивости.

Итак, выше были рассмотрены одни из самых главных условий формирования познавательного интереса. Соблюдение всех этих условий способствует формированию познавательного интереса при обучении школьным предметам, в том числе и математике.

2.3 Формирование познавательных интересов в обучении

математике

Познавательный интерес, как и всякая черта личности и мотив деятельности школьника, развивается и формируется в деятельности, и, прежде всего, в учении.

Успех учителя в процессе обучения зависит в первую очередь от того, насколько ему удалось заинтересовать учащихся своим предметом. Но интерес не может возникнуть сам по себе, учителю нужно принять в этом участие, поспособствовать. Как это сделать? Следует заметить, что успеваемость учащихся по предмету не всегда является показателем наличия у ученика познавательного интереса к нему. Ребенок может получать только отличные оценки и это может свидетельствовать только о его старательности или о том, что ему легко дается математика. О наличии у него познавательного интереса к математике утверждать нельзя. В то же время, ученик, не отличающийся успеваемостью по математике, может проявлять интерес к предмету, ему нравиться заниматься на уроке математики. Работа учителя в классе заключается в том, чтобы выявить таких учеников, развить и сформировать у них устойчивый познавательный интерес. Педагог должен поддержать таких учеников, разнообразить их учебную деятельность, привлечь к внеклассной работе по математике. Возможно, таким детям понравиться решать нестандартные математические задачи, в которых они смогут проявить свои математические способности. Добившись успеха, ученик поднимется не только в своих глазах, но в глазах одноклассников. Все это вдохновит его на дальнейшее более серьезное изучение математики.

Чтобы заинтересовать как можно больше учащихся математикой, учителю нужно использовать в обучении математике различные формы, знать основные пути формирования познавательного интереса. Формирование познавательных интересов учащихся в обучении может происходить по двум основным каналам, с одной стороны само содержание учебных предметов содержит в себе эту возможность, а с другой – путем определенной организации познавательной деятельности учащихся.

Первое, что является предметом познавательного интереса для школьников – это новые знания о мире. Вот почему глубоко продуманный отбор содержания учебного материала, показ богатства, заключенного в научных знаниях, являются важнейшим звеном формирования интереса к учению. Каковы же пути осуществления этой задачи? Прежде всего, интерес возбуждает и подкрепляет такой учебный материал, который является для учащихся новым, неизвестным, поражает их воображение, заставляет удивляться. Удивление - сильный стимул познания, его первичный элемент. Удивляясь, человек как бы стремится заглянуть вперед. Он находится в состоянии ожидания чего-то нового.

Но познавательный интерес к учебному материалу не может поддерживаться все время только яркими фактами, а его привлекательность невозможно сводить к удивляющему и поражающему воображение. Новое и неожиданное всегда в учебном материале выступает на фоне уже известного и знакомого. Вот почему для поддержания познавательного интереса важно учить школьников умению в знакомом видеть новое. Такое преподавание подводит к осознанию того, что у обыденных, повторяющихся явлений окружающего мира множество удивительных сторон, о которых он сможет узнать на уроках.

Все значительные явления жизни, ставшие обычными для ребенка в силу своей повторяемости, могут и должны приобрести для него в обучении неожиданно новое, полное смысла, совсем иное звучание. И это обязательно явится стимулом интереса ученика к познанию. Именно поэтому учителю необходимо переводить школьников со ступени его чисто житейских, достаточно узких и бедных представлений о мире - на уровень научных понятий, обобщений, понимания закономерностей. Интересу к познанию содействует также показ новейших достижений науки. Сейчас, больше чем когда-либо, необходимо расширять рамки программ, знакомить учеников с основными направлениями научных поисков, открытиями. Все это можно осуществлять как на уроке математике, так и во внеклассной работе по математике.

Есть и другие направления развития интереса у школьников к математике, например использование научной фантастики. Задачи так же могут служить средством развития познавательного интереса. Содержание задач, их занимательная фабула, связь с жизнью незаменимы при обучении математике. Занимательность создает заинтересованность, рождает чувство ожидания, побуждает любопытство, любопытство переходит в любознательность и побуждает интерес к решению математических задач, к самой математике. К содержательной стороне задачи относится и ее новизна, достигаемая за счет включения сведений, связанных с жизнью. Повышают интерес к математике и задачи, содержащие факты из жизни конкретных исторических личностей, сведения из истории математики. Вообще, включение сведений из истории науки в занятия способствуют более сознательному усвоению учебного материала, развитию интереса у школьников к математике. Новизна задач также может достигаться путем реализации предметных связей. Также для развития интереса к математике можно использовать задачи и упражнения, содержащие ошибки. Такие задачи приучают школьников обращать внимание на необходимость строгих логических рассуждений. Умение решать задачи является одним из показателей уровня математического развития учащихся, глубины усвоения имеющихся у них знаний.

Далеко не все в учебном материале может быть для учащихся интересно. И тогда выступает еще один, не менее важный источник познавательного интереса – сам процесс деятельности. Что бы возбудить желание учиться, нужно развивать потребность ученика заниматься познавательной деятельностью, а это значит, что в самом процессе ее школьник должен находить привлекательные стороны, что бы сам процесс учения содержал в себе положительные заряды интереса. Так эпизодическое использование игровых ситуаций, проведение в виде игр уроков и внеклассной работы своей не традиционностью и занимательностью повышают интерес учащихся к предмету.

Разнообразив содержание занятий по математике, как внеклассных, так и самих уроков, изменяя форму их приведения и учтя все условия формирования познавательного интереса, можно способствовать его развитию у большого числа учащихся.

Вывод: Итак, мы рассмотрели в первой главе понятие познавательного интереса, условия и способы его формирования при обучении математике. В связи с этим можно сделать следующие выводи:

Познавательный интереспсихологи и педагоги изучают с разных сторон, но любое исследование рассматривает интерес как часть общей проблемы воспитания и развития.

Познавательный интерес – это избирательная направленность личности на предметы и явления окружающей действительности.

Познавательный интерес можно рассматривать с разных сторон: как мотив учения, как устойчивую черту личности, как сильное средство обучения. Для того чтобы активизировать учебную деятельность школьника нужно систематически возбуждать, развивать и укреплять познавательный интерес и как мотив, и как стойкую черту личности, и как мощное средство обучения.

Существует четыре уровня развития познавательного интереса. Это любознательность, любопытство, познавательный интерес и теоретический интерес. Учителю нужно уметь определять, на какой стадии развития познавательный интерес у отдельных учащихся, для того чтобы способствовать укреплению интереса к предмету и его дальнейшему росту.

Выделяют также условия формирования познавательного интереса, а именно: максимальная опора на активную мыслительную деятельность учащихся, ведение учебного процесса на оптимальном уровне развития учащихся, положительный эмоциональный тонус учебного процесса, благоприятное общение в учебном процессе.

Познавательный интерес к математике формируется и развивается в процессе учения. Главная цель учителя заключается в том, чтобы заинтересовать учащихся своим предметом. А успешно осуществлять данную цель можно не только на уроках, но и во внеклассной работе по математике.

Глава II. Внеклассная работа по математике как средство развития познавательного интереса учащихся

§1 Значение внеклассной работы по математике как средства развития познавательного интереса

Отношение учащихся к тому или иному предмету определяется различными факторами: индивидуальными особенностями личности, особенностями самого предмета, методикой его преподавания.

По отношению к математике всегда имеются некоторые категории учащихся, проявляющие повышенный интерес к ней; занимающиеся ею по мере необходимости и особенного интереса к предмету не проявляющие; ученики, считающие математику скучным, сухим и вообще не любимым предметом. Поэтому уже с первых классов начинается резкое расслоение коллектива учащихся: на тех, кто легко и с интересом усваивают программный материал по математике, на тех, кто добивается при математике лишь удовлетворительных результатов, и тех, кому успешное изучение математики дается с большим трудом. Это приводит к необходимости индивидуализации обучения математике, одной из форм которой является внеклассная работа.

Под внеклассной работой по математике понимают необязательные систематические занятия учащихся с преподавателем во внеурочное время.

Внеурочные занятия по математике призваны решить целый комплекс задач по углубленному математическому образованию, всестороннему развитию индивидуальных способностей школьников и максимальному удовлетворению их интересов и потребностей.

Дышинский выделяет три основные задачи внеклассной работы по математике:

o Повысить уровень математического мышления, углубить теоретические знания и развить практические навыки учащихся, проявивших математические способности;

o Способствовать возникновению интереса у большинства учеников, привлечение некоторых из них в ряды «любителей математики»;

o Организовать досуг учащихся в свободное от учебы время.

Внеклассная работа по математике является составной частью учебного процесса, естественным продолжением работы на уроке. Она отличается от классной работы тем, что строится на принципе добровольности. Государственных программ по внеклассной работе нет, как нет и норм оценок. Для внеклассной работы учитель подбирает материал повышенной трудности или материал, дополняющий изучение основного курса математики, но с учётом преемственности с классной работой. Здесь может широко использоваться упражнения в занимательной форме.

Несмотря на свою необязательность для школы, внеурочные занятия по математике заслуживают самого пристального внимания каждого учителя, преподающего этот предмет, так как часы на основной курс математики сокращаются.

Учитель может на внеклассных занятиях по математике в максимальной мере учесть возможности, запросы и интересы своих учеников. Внеклассная работа по математике дополняет обязательную учебную работу по предмету и должна, прежде всего, способствовать более глубокому усвоению учащимися материала, предусмотренного программой.

Одна из основных причин сравнительно плохой успеваемости по математике – слабый интерес многих учащихся к этому предмету. Интерес к предмету зависит, прежде всего, от качества учебной работы на уроке, В то же время с помощью продуманной системы внеурочных занятий можно значительно повысить интерес школьников к математике.

Наряду с учащимися безразличными к математике, имеются и ученики увлекающиеся этим предметом. Им мало тех знаний, которые они получают на уроке. Они хотели бы больше узнать о своем любимом предмете, порешать более трудные задачи. Разнообразные формы внеурочных занятий предусматривают большие возможности в этом направлении.

Внеурочные занятия с учащимися с успехом могут быть использованы для углубления знаний учащихся в области программного материала, развития их логического мышления, исследовательских навыков, смекалки, привития вкуса к чтению математической литературы, для сообщения учащимся полезных сведений из истории математики.

Внеклассная работа создает большие возможности для решения воспитательных задач, стоящих перед школой (в частности, воспитание у учащихся настойчивости, инициативности, воли, смекалки).

Внеурочные занятия с учащимися приносят большую пользу и самому учителю. Чтобы успешно проводить внеклассную работу, учителю приходится постоянно расширять свои познания по математике, следить за новостями математической науки. Это благотворно сказывается и на качестве его уроков.

Можно выделить следующие виды внеклассной работы по математике:

o Работа с учащимися, отстающими от других в изучении программного материала;

o Работа с учащимися, проявляющими к изучению математики повышенный интерес и способности;

o Работа с учащимися по развитию интереса в изучении математики.

В третьем случае задачей учителя заключается в том, чтобы заинтересовать учашихся математикой.

Систематической внеклассной работой по математике должно быть охвачено большинство школьников, в ней должны быть заняты не только ученики, увлеченные математикой, но и те учащиеся, которые не тяготеют еще к математике, не выявили своих способностей и наклонностей.

Это особенно важно в подростковом возрасте, когда еще формируются, а иногда определяются постоянные интересы и склонности к тому или иному предмету. Именно в этот период нужно стремиться раскрыть притягательные стороны математики перед всеми учащимися, используя для этой цели все возможности, в том числе и особенности внеклассных занятий.

В связи с указанными выше видами внеклассной работы по математике можно выделить в ней следующие цели:

1. Своевременная ликвидация (и предупреждение) имеющихся у учащихся пробелов в знаниях и умениях по курсу математики;

2. Пробуждение и развитие устойчивого интереса учащихся к математике и её приложениям;

3. Расширение и углубление знаний учащихся по программному материалу;

4. Оптимальное развитие математических способностей у учащихся и привитие учащимся определённых навыков научно - исследовательского характера;

5. Воспитание высокой культуры математического мышления;

6. Развитие у школьников умения самостоятельно и творчески работать с учебной и научно - популярной литературой;

7. Расширение и углубление представлений учащихся о практическом значении математики;

8. Воспитание у учащихся чувства коллективизма и умения сочетать индивидуальную работу с коллективной;

9. Установление более тесных деловых контактов между учителем математики и учащимися и на этой основе более глубокое изучение познавательных интересов и запросов школьников;

10. Создание актива, способного оказать учителю математики помощь в организации эффективного обучения математике всего коллектива данного класса.

Предполагается, что реализация этих целей частично осуществляется на уроках. Однако в процессе классных занятий, ограниченных рамками учебного времени и программы, это не удаётся сделать с достаточной полнотой. Поэтому окончательная и полная реализация этих целей переносится на внеклассные занятия этого вида.

Учителя математики, которые работают творчески, с огоньком, большое значение в своей работе отводят формированию познавательных интересов в процессе обучения, поиску методов, форм, средств, приемов, побуждающих учащихся к активной мыслительной деятельности.

Добиться, чтобы большинство подростков испытали и осознали притягательные стороны математики, ее возможности в совершенствовании умственных способностей, полюбили думать, преодолевать трудности,- сложная, но очень нужная и важная сторона обучения математике. Возникновение интереса к математике у большинства учащихся зависит в большей степени от методики его преподнесения, оттого, насколько тонко и умело будет построена учебная работа.

К формам, широкое использование которых является целесообразным во внеклассной работе по математике, относятся игровые формы занятий - занятия, пронизанные элементами игры, соревнования, содержащие игровые ситуации.

Развитие познавательного интерес учащихся задача чрезвычайной важности, от решения которой, в значительной мере зависит успех овладения учащимися различными знаниями, умениями и навыками. В процессе учебной деятельности большую роль играет уровень развития познавательных процессов: мышления, внимания, памяти, воображения, речи; а так же способностей учащихся. Их развитие и совершенствование повлечёт за собой и расширение познавательных возможностей детей. Для этого необходимо включать ребёнка в доступную его возрасту деятельность. Деятельность должна вызывать у школьника сильные и устойчивые положительные эмоции, удовольствие; она должна быть по возможности творческой; ученик должен преследовать цели, всегда немного превосходящие его возможности, то есть идёт активное развитие познавательного интереса, учащихся. Этому содействуют различные формы внеклассной работы по математике. При проведении внеклассной работы по математике регулярно используются системы специальных задач и заданий, которые направлены на развитие познавательных возможностей и способностей, на расширение математического кругозора школьников, способствуют математическому развитию, повышают качество математической подготовленности, позволяют детям более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни. При проведении внеклассной работы по математике учитель опирается на знания, которые уже есть у ученика, ученик же открывает для себя что-то новое, неизведанное. Таким образом, внеклассная работа по математике выступает средством развития познавательного интереса учащихся через свои цели, задачи, содержание и формы проведения.

§2 Математическая игра как форма внеклассной работы по математике

На сегодняшний день существуют различные формы проведения внеклассной работы по математике с учащимися. К ним можно отнести:

o Математический кружок;

o Школьный математический вечер;

o Математическая олимпиада;

o Математическая игра;

o Школьная математическая печать;

o Математическая экскурсия;

o Математические рефераты и сочинения;

o Математическая конференция;

o Внеклассное чтение математической литературы и др.

Очевидно, формы проведения внеклассных занятий и приемы, используемые на этих занятиях, должны удовлетворять ряду требований.

Во-первых, они должны отличаться от форм проведения уроков и других обязательных мероприятий. Это важно, так как внеклассная работа строится на добровольных началах и обычно проводиться после уроков. Поэтому чтобы заинтересовать учащихся предметом и привлечь их к внеклассной работе необходимо проводить ее в необычной форме.

Во-вторых, эти формы проведения внеклассных занятий должны быть разнообразны. Ведь для того чтобы поддерживать интерес учеников, нужно постоянно их удивлять, разнообразить их деятельность.

В-третьих, формы проведения внеклассных занятий должны быть рассчитаны на различные категории учащихся. Внеклассная работа должна привлекать и проводиться не только для интересующихся математикой и одаренных школьников, но для учеников, не проявляющих интереса к предмету. Возможно, благодаря правильно выбранной форме внеклассной работы, рассчитанной на то чтобы заинтересовать и увлечь учащихся, такие ученики станут больше уделять внимания математике.

И, наконец, в-четвертых, эти формы должны выбираться с учетом возрастных особенностей детей, для которых проводиться внеклассное мероприятие.

Нарушение этих основных требований может привести к тому, что внеклассные занятия по математике будет посещать небольшое количество учеников или вообще перестанут посещать. Учащиеся занимаются математикой только на уроках, где у них нет возможности испытать и осознать притягательные стороны математики, ее возможности в совершенствовании умственных способностей, полюбить предмет. Поэтому при организации внеклассной работы важно не только задумываться над ее содержанием, но и, обязательно, над методикой проведения, формой.

Игровые формы занятий или математические игры – это занятия, пронизанные элементами игры, соревнования, содержащие игровые ситуации.

Математическая игра как форма внеклассной работы играет огромную роль в развитии познавательного интереса у учащихся. Игра оказывает заметное влияние на деятельность учащихся. Игровой мотив является для них подкреплением познавательному мотиву, способствует активности мыслительной деятельности, повышает концентрированность внимания, настойчивость, работоспособность, интерес, создает условия для появления радости успеха, удовлетворенности, чувства коллективизма. В процессе игры, увлекшись, дети не замечают, что учатся. Игровой мотив одинаково действен для всех категорий учащихся, как сильных и средних, так и слабых. Дети с большой охотой принимают участие в различных по характеру и форме математических играх. Математическая игра резко отличается от обычного урока, поэтому вызывает интерес большинства учащихся и желание поучаствовать в ней. Так же следует заметить, что многие формы внеклассной работы по математике могут содержать в себе элементы игры, и наоборот, некоторые формы внеклассной работы могут быть частью математической игры. Введение игровых элементов во внеклассное занятие разрушает интеллектуальную пассивность учащихся, которая возникает у учащихся после длительного умственного труда на уроках.

Математическая игра как форма внеклассной работы по математике является массовой по обхвату и познавательной, активной, творческой относительно деятельности учащихся.

Главной целью применения математической игры является развитие устойчивого познавательного интереса у учащихся через разнообразие применения математических игр.

Таким образом, среди форм внеклассной работы можно выделить математическую игру, как наиболее яркую и привлекательную для учащихся. Игры и игровые формы включаются во внеклассную работу не только для того чтобы развлечь учеников, но и заинтересовать их математикой, возбудить у них стремление преодолеть трудности, приобрести новые знания по предмету. Математическая игра удачно соединяет игровые и познавательные мотивы, и в такой игровой деятельности постепенно происходит переход от игровых мотивов к учебным мотивам.

Вывод: По второй главе можно сделать следующие выводы:

Внеклассная работа по математике решает некоторые задачи. А именно повышает уровень математического мышления, углубляет теоретические знания, развивает практические навыки учащихся, а главное способствует возникновению познавательного интереса у школьников к математике.

Существует несколько видов внеклассной работы по математике: работа с отстающими по математике; работа с учениками интересующимися математикой; работа по развитию познавательного интереса к математике.

В связи с видами внеклассной работы по математике выделяют ее цели. Одной из самых главных целей внеклассной работы по математике является пробуждение и развитие устойчивого интереса учащихся к математике.

Внеклассная работа по математике может проводиться в разных формах. Эти формы внеклассной работы должны удовлетворять ряду требований: отличаться от форм проведения уроков, должны быть разнообразны, должны быть рассчитаны на различные категории учащихся, выбираться и разрабатываться с учетом возрастных особенностей.

Среди всех форм внеклассной работы по математике можно выделить математическую игру, как наиболее яркую и любимую для большинства школьников. Математическая игра как форма внеклассной работы играет огромную роль в развитии познавательного интереса учащихся к математике.

Глава III. Математическая игра как средство развития познавательного интереса учащихся

§ 1 Психолого-педагогические основы математической игры

Математическая игра является одной из форм внеклассной работы по математике. Она используется в системе внеклассной работы для формирования у детей интереса к предмету, приобретения ими новых знаний, умений, навыков, углубление уже имеющихся знаний. Игра наряду с учением и трудом – один из основных видов деятельности человека, удивительный феномен нашего существования.

Что же понимается под словом игра? Термин «игра» многозначен, в широком употреблении границы между игрой и не игрой чрезвычайно размыты. Как справедливо подчеркивал Д. Б. Эльконин и С. А. Шкаков , слова «игра» и «играть» употребляются в самых различных смыслах: развлечение, исполнение музыкального произведения или роли в пьесе. Ведущая функция игры – отдых, развлечение. Это свойство как раз и отличает игру от не игры.

Феномен детской игры изучен исследователями довольно широко и разносторонне, как в отечественных разработках, так и за рубежом.

Игра, по мнению многих ученых-психологов, есть вид развивающей деятельности, форма освоения социального опыта, одна из сложных способностей человека.

Российский психолог А.Н. Леонтьев считает игру ведущим типом деятельности ребенка, с развитием которой происходят главные изменения психики детей, подготавливающие переход к новой, высшей степени их развития. Забавляясь и играя, ребенок обретает себя и осознает себя личностью.

Игра, в частности математическая, необычайно информативна и многое «рассказывает» самому ребенку о нем. Она помогает найти ребенком себя в коллективе сотоварищей, в целом обществе, человечестве, во вселенной.

В педагогике к играм относят самые разнообразные действия и формы занятий детей. Игра - это занятие, во-первых, субъективно значимое, приятное, самостоятельное и добровольное, во-вторых, - имеющее аналог в реальной действительности, но отличающаяся своей не утилитарностью и буквальностью воспроизведения, в-третьих, - возникающая спонтанно или создаваемая искусственно для развития каких-либо функций или качеств личности, закрепления достижений или снятия напряжения. Обязательная характерная черта всех игр – особое эмоциональное состояние, на фоне и при участии которого они проходят.

А.С. Макаренко считал, что «игра должна постоянно пополнять знания, быть средством всестороннего развития ребенка, его способностей, вызывать положительные эмоции, пополнять жизнь детского коллектива интересным содержанием».

Можно дать следующее определение игры. Игра – вид деятельности, имитирующий реальную жизнь, имеющий четкие правила и ограниченную продолжительность. Но, несмотря на различия в подходах к определению сущности игры, ее назначения, все исследователи сходятся в одном: игра, в том числе математическая, является способом развития личности, обогащения ее жизненного опыта. Поэтому игра используется как средство, форма и метод обучения и воспитания.

Существует много классификаций и видов игры. Если классифицировать игру по предметным областям, то можно выделить математическую игру. Математическая игра по области деятельности это, прежде всего, интеллектуальная игра, то есть игра, где успех достигается в основном за счет мыслительных способностей человека, его ума, имеющихся у него знаний по математике.

Математическая игра помогает закреплять и расширять предусмотренные школьной программой знания, умения и навыки. Ее настоятельно рекомендуется использовать на внеклассных занятиях и вечерах. Но эти игры не должны восприниматься детьми как процесс преднамеренного обучения, так как это разрушило бы саму сущность игры. Природа игры такова, что при отсутствии абсолютной добровольности, она перестает быть игрой.

В современной школе математическая игра используется в следующих случаях: в качестве самостоятельной технологии * для освоения понятия, темы или даже раздела учебного предмета; как элемент более обширной технологии; в качестве урока или его части; как технология внеклассной работы.

Математическая игра, включенная в занятие, и просто игровая деятельность в процессе обучения оказывают заметное влияние на деятельность учащихся. Игровой мотив является для них действительным подкреплением познавательному мотиву, способствует созданию дополнительных условий для активной мыслительной деятельности учащихся, повышает концентрированность внимания, настойчивость, работоспособность, создает дополнительные условия для появления радости успеха, удовлетворенности, чувства коллективизма.

Математическая игра, да и любая игра в учебно-воспитательном процессе, имеет характеристические черты. С одной стороны, условный характер игры, наличие сюжета или условий, наличие используемых предметов и действий, с помощью которых происходит решение игровой задачи. С другой стороны, свобода выбора, импровизация во внешней и внутренней деятельности позволяют участникам игры получать новую информацию, новые знания, обогащаться новым чувственным опытом и опытом мыслительной и практической деятельности. Через игру, реальные чувства и мысли участников игры, их положительный настрой, реальные действия, творчество возможно успешное решение учебно-воспитательных задач, а именно, формирование положительной мотивации в учебной деятельности, чувства успеха, интереса, активности, потребности в общении, желании достичь лучшего результата, превзойти себя, повысить свое мастерство.

§ 2 Математические игры как средство развития познавательного интереса к математике

2.1 Актуальность

Предмет математики представляет собой связную систему определений, теорем и правил. Каждое новое определение, теорема и правило опираются на предыдущее, ранее введенное, доказанное. Каждая новая задача включает элементы ранее решенной. Такая связность, взаимозависимость и дополняемость всех разделов предмета, нетерпимость к пробелам и пропускам, недопониманию, как в целом, так и в частях, является причиной неуспехов учащихся в обучении математики. Вследствие этих неуспехов возникает потеря интереса к предмету. Но наряду с этим математика это также система задач, для решения каждой из которых требуются умственные усилия, настойчивости, воли и других качеств личности. Эти особенности математики создает благоприятные условия для развития активности мышления, но также они нередко и служат причиной пассивности учащихся. Для таких учеников, не проявляющих интерес к математике, для которых она кажется «скучной», «сухой» наукой и нужно проводить внеклассные занятия в интересной, занимательной форме, в форме математической игры. Первоначально учащихся увлечет сам процесс, а в последствии захочется узнать что-то новое, для того добиться успехов в игре, выиграть.

Известно, что только при наличии как близких мотивов – непосредственно побуждающих учебную деятельность (интересы, поощрения, похвала, оценка и др.), так и далеких – социальных мотивов, ориентирующих ее (долг, потребность, ответственность перед коллективом, осознание общественного значения учения и др.), возможна устойчивая мыслительная деятельность, интерес к предмету. Отсутствие мотивов или ослабление их может привести к пассивности. Нередко имеет место на уроке математике выполнение однообразной, «скучной» работы, выполнение однотипных заданий. В таких случаях интерес к предмету ослабляется, близкие мотивы деятельности отсутствуют, ослаблен мотив практической значимости, т.е. мотивы деятельности в данный момент не имеют для учащихся смысла. Наличие только далеких мотивов, подкрепляющихся словесно, не создает достаточных условий для проявления настойчивости и активности (вычисления остаются не законченными). Подобное можно наблюдать и при решении задач повышенной трудности, которым отводиться большое место на внеклассных занятиях. Эта работа осознается учащимися как полезная и нужная, но трудности иногда оказываются слишком большими и эмоциональный подъем, который наблюдался в начале решения задачи, снижается, ослабляется внимание, воля, снижается интерес и в конечном счете все это приводит к пассивности. В данных ситуациях с большим эффектом могут использоваться математические игры, содержащие элементы соревнования. У учащихся есть цель выиграть, обогнать всех остальных, быть лучшим. Они глубоко сосредотачиваются на задании, упорно решают его. Достигнув успеха, ученик «стремится к преодолению еще более высоких вершин», а неудачи лишь подстегают его к тому, чтобы подготовиться и в следующий раз добиться своей цели. Все это стимулирует у учащихся познавательную активность, интерес.

Активность и интерес к деятельности зависит от характера деятельности и ее организации. Известно, что деятельность, в которой ставятся вопросы, проблемы, требующие самостоятельного решения, деятельность, в процессе которой рождаются положительные эмоции (радость успеха, удовлетворения и др.), чаще всего вызывают интерес, активную познавательную деятельность. И наоборот, деятельность однообразная, рассчитанная на механическое выполнение, запоминание, как правило, не может вызвать интереса, отсутствие положительных эмоций может привести к пассивности. Математические игры разнообразны, требуют самостоятельности и эмоционально насыщены. Использование их на внеклассных занятиях повышает активность учащихся, заряжает положительными эмоциями, способствует возникновению познавательного интереса к предмету. Математическая игра завлекает учащихся. Они с увлечением выполняют различные задания. Учащиеся не задумываются над тем, что во время игры они учатся, занимаются тем же умственным трудом, что и на уроках.

Все это говорит о том, что математическую игру нужно использовать во внеклассной работе по математике для того чтобы воздействовать на пробуждение интеллектуальной активности школьников и формирование у них интереса к предмету.

2.2 Цели, задачи, функции, требования математической игры

Как уже говорилось выше основная цель применения математической игры на внеклассных занятиях о математике – это развитие устойчивого познавательного интереса у учащихся к предмету через разнообразие используемых математических игр.

Так же можно выделить и следующие цели применения математических игр:

o Развитие мышления;

o Углубление теоретических знаний;

o Самоопределение в мире увлечений и профессий;

o Организация свободного времени;

o Общение со сверстниками;

o Воспитание сотрудничества и коллективизма;

o Приобретение новых знаний, умений и навыков;

o Формирование адекватной самооценки;

o Развитие волевых качеств;

o Контроль знаний;

o Мотивация учебной деятельности и др.

Математические игры призванырешать следующие задачи.

Образовательные:

Способствовать прочному усвоению учащимися учебного материала;

Способствовать расширению кругозора учащихся и др.

Развивающие:

Развивать у учащихся творческое мышление;

Способствовать практическому применению умений и навыков, полученных на уроках и внеклассных занятиях;

Способствовать развитию воображения, фантазии, творческих способностей и др.

Воспитательные:

Способствовать воспитанию саморазвивающейся и самореализующейся личности;

Воспитать нравственные взгляды и убеждения;

Способствовать воспитанию самостоятельности и воли в работе и др.

Математические игры выполняют различные функции.

1. Во время математической игры происходит одновременно игровая, учебная и трудовая деятельность. Действительно, игра сближает то, что в жизни не сопоставимо и разводит то, что считается едино.

2. Математическая игра требует от школьника, то чтобы он знал предмет. Ведь не умея решать задачи, разгадывать, расшифровывать и распутывать ученик не сможет участвовать в игре.

3. В играх ученики учатся планировать свою работу, оценивать результаты не только чужой, но и своей деятельности, проявлять смекалку при решении задач, творчески подходить к любому заданию, использовать и подбирать нужный материал.

4. Результаты игр показывают школьникам их уровень подготовленности, тренированности. Математические игры помогают в самосовершенствовании учащихся и, тем самым побуждают их познавательную активность, повышается интерес к предмету.

5. Во время участия в математических играх учащиеся не только получают новую информацию, но и приобретают опыт сбора нужной информации и правильного ее применения.

К игровым формам внеклассных занятий предъявляется рад требований.

К участникам математической игры должны предъявляться определенные требования в отношении знаний . В частности, чтобы играть – надо знать. Это требование придает игре познавательный характер.

Правила игры должны быть такими, чтобы учащиеся проявили желание поучаствовать в ней. Поэтому игры должны разрабатываться с учетом возрастных особенностей детей , проявляемых ими интересов в том или ином возрасте, их развития и имеющихся знаний.

Математические игры должны разрабатываться с учетом индивидуальных особенностей учащихся, с учетом различных групп учащихся : слабые, сильные; активные, пассивные и др. Они должны быть такими, чтобы каждый тип учащихся смог проявить себя в игре, показать свои способности, возможности, свою самостоятельность, настойчивость, смекалку, испытать чувство удовлетворенности, успеха.

При разработке игры нужно предусмотреть более легкие варианты игры , задания, для слабых учащихся и наоборот более сложный вариант для сильных учеников. Для совсем слабых учащихся разрабатываются игры, где не нужно думать, а нужна, лишь смекалка. Таким образом, можно привлечь больше учащихся к посещению внеклассных занятий по математике и тем самым способствовать развитию у них познавательного интереса.

Математические игры должны разрабатываться с учетом предмета и его материала . Они должны быть разнообразны. Многообразие видов математических игр поможет повысить эффективность внеклассной работы по математике, послужит дополнительным источником систематических и прочных знаний.

Таким образом, математическая игра как форма внеклассной работы по математике имеет свои цели, задачи и функции. Соблюдение же всех требований предъявляемых к математическим играм позволит добиться хороших результатов по привлечению большего числа учащихся к внеклассной работе по математике, возникновению у них познавательного интереса к ней. Не только сильные учащиеся будут больше проявлять заинтересованность к предмету, но и слабые учащиеся начнут проявлять свою активность в учении.

2.3 Виды математических игр

Одним из требований к математическим играм является их многообразие. Можно привести следующую классификацию математических игр по разным основаниям, но она не будет являться строгой, так как каждую игру можно отнести к нескольким видам из этой классификации.

Итак, система математических игр включает следующие виды:

1. По назначению различают обучающие , контролирующие и воспитывающие игры. Также можно выделить развивающие и занимательные .

Участвуя в обучающей игре, школьники приобретают новые знания, навыки. Так же такая игра может служить стимулом для получения новых знаний: ученики вынуждены приобрести новые знания перед игрой; очень заинтересовавшись каким-либо материалом, полученным на игре, ученик может изучить его подробнее уже самостоятельно.

Воспитывающая игра имеет целью воспитать у учащихся отдельные качества личности, такие как внимание, наблюдательность, смекалка, самостоятельность и др.

Для участия в контролирующей игре учащимся достаточно имеющихся у них знаний. Цель такой игры и состоит в том, чтобы школьники закрепили свои полученные знания, проконтролировать их.

Занимательные игры отличаются от других видов тем, что для участия в ней никаких конкретных знаний не надо, нужна только смекалка. Основная цель такой игры это привлечь к математике слабых учеников, не проявляющих интереса к предмету, развлечь.

И последний вид в этой классификации, это развивающие игры. Они в основном предназначены для сильных учеников, увлекающихся математикой. Они развивают нестандартность мышления учеников при решении соответствующих заданий. Такие игры особой развлекательностью не отличаются, являются более серьезными.

Конечно, в практике все эти виды переплетаются между собой, и одна игра может быть одновременно и контролирующей и обучающей, лишь в соотношении между целями можно говорить о принадлежности математической игры к тому или иному виду.

2. По массовости различают коллективные и индивидуальные игры.

Игры подростков чаще всего принимают коллективный характер. Школьникам свойственно чувство коллективизма, у них есть желание участвовать в жизни коллектива в качестве его полноправного члена. Дети стремятся к общению со своими сверстниками, стремятся участвовать с ними в совместной деятельности. Поэтому использование коллективных математических игр во внеклассной работе по математике так необходимо. Они привлекают не только сильных учеников, но и слабых, желающих поучаствовать в игре вместе со своими друзьями. Такие ученики, не проявляющие интереса к математике, в коллективной игре могут добиться успеху, у них появляется чувство удовлетворенности, интерес.

С другой же стороны сильные ученики предпочитают индивидуальные игры, так как они более самостоятельны. Они стремятся к самоанализу, самооценке, и поэтому у них возникает потребность проявить свои индивидуальные возможности, качества. Такие игры связаны обычно с умственным трудом, то есть являются интеллектуальными, в них учащиеся могут проявить свои умственные способности.

Оба вида игр имеет свои особенности и возможности, поэтому о предпочтении какой-нибудь из них говорить нельзя.

3. По реакции выделяют подвижные и тихие игры.

Основной деятельностью учащихся является учеба. Они проводят в школе 5-6 часов на уроках, и дома 2-3 часа уходит на выполнение домашнего задания. Естественно, что их растущий организм требует движения. Поэтому на внеклассных занятиях по математике нужно вводить элементы подвижности. Математическая игра позволяет включить в себя подвижную деятельность и не мешает умственной работе. Действительно, подростковый возраст отличается кипучей деятельностью и энергичностью движений. Наиболее естественное состояние ребенка это движение, и, поэтому использование подвижных математических игр на внеклассных занятиях привлекает детей своей необычностью, им нравится участвовать в такой деятельности, участвуя в ней, они не замечают, что еще и учатся, возникает интерес не только к внеклассной работе по математике, но и к самому предмету.

Тихие же игры служат хорошим средством перехода от одного умственного труда к другому. Они используются перед началом занятия математического кружка, математического вечера, олимпиады и других массовых мероприятий, в конце внеклассного занятия по математике. К тому же встречаются дети, которые предпочитают тихие игры, требующие пытливости ума, настойчивости. Для таких детей подойдут тихие игры, такие как различные головоломки, кроссворды, игры на складывание и разрезание фигур, и многие другие.

4. По темпу выделяют скоростные и качественные игры.

Некоторые математические игры должны принимать форму состязаний, соревнований между командами или на личное первенство, это обусловлено характерной чертой подростков, стремления к различным видам состязаний.

Следует различать два вида состязаний. Во-первых, это игры, в которых победа достигается за счет скорости действий, но это без ущерба качеству решения задач. Например, задания на скорость выполнения вычислений, преобразований, доказательств теорем и т. д. Такие игры называются скоростными . Во-вторых, так же можно выделить игры, победа в которых достигается не за счет скорости выполнения заданий, а за счет качества его выполнения, правильности решения, безошибочности. Такие игры условно называют качественными .

Первый вид игр (скоростные ) необходим, когда нужен автоматизм действий, формируется навык быстрого вычисления, выполнения действий, не требующих большого умственного труда. Также элементы скоростных игр могут быть включены в другие математические игры. Использование таких игр сопровождается эмоциональным подъемом, желанием выиграть, стремлением быть не только лучшими, но и самым быстрым, вызывает интерес учащихся.

Качественные же игры направлены на серьезные вычисления, требует вдумчивой работы над трудными задачами, теоремами. Такие игры способствуют пробуждению мыслительной деятельности учащихся, заставляют их активно думать над задачей, развивают настойчивость, упорство, что необходимо во внеклассной работе по математике. Неразрешимые, казалось бы, сложные задачи способствуют повышению умственного труда, упорства, и, как следствие, желанию узнать больше, появлению интереса к предмету.

5. Наконец, различают игры одиночные и универсальные .

К одиночным играм относят те игры, правила которых не допускают изменения содержания игры, они разработаны с учетом особенностей конкретного материала.

Универсальные игры же, наоборот, позволяют менять свое содержание. Они разрабатываются по широкому кругу вопросов школьной программы, могут использоваться в различных целях, на различных внеклассных мероприятиях, и поэтому являются очень ценными.

Приведем еще одну классификацию игр по схожести правил и характера проведения. Данная классификация будет включать в себя следующие виды игр:

o Настольные игры;

o Математические мини-игры;

o Викторины;

o Игры по станциям;

o Математические конкурсы;

o Игры-путешествия;

o Математические лабиринты;

o Математическая карусель;

o Разновозрастные.

В дальнейшем мы будем рассматривать только эти виды игр.

Некоторые из выше перечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.

Настольные игры.

К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).

Рассмотрим некоторые из наиболее распространенных настольных игр.

Математическое лото . Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.

Игры со спичками . Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.

Очень нравятся детям игры-головоломки . В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.

Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).

Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.

Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.

Математические мини-игры .

На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.

Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку» , «Математическое казино» , «Стрельба по мишеням» , «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.

В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом» .

Все эти игры ограничены по времени. В конце игры подсчитываются баллы и определяются победители.

Математические мини-игры как бы имитируют определенную (жизненную) ситуацию: ловля рыбы, игру в казино и другие, благодаря этому мини-игры завлекают детей, у школьников возникает интерес, они стремятся правильно решить как можно больше задач, прилагая к этому все свои силы и знания.

Среди мини-игр также можно выделить небольшую группу игр-соревнований. К таким играм можно отнести, например, «Математическую эстафету» , различные конкурсы капитанов, входящие в более крупные математические игры. Это в основном игры на скорость выполнения заданий, но и качество их выполнения играет тоже не последнюю роль. Это могут быть как командные соревнования, так и между двумя участниками. Эти игры насыщены эмоциональными переживаниями, что свойственно обычным соревнованиям, где нужно быстрее и лучше соперника справиться с поставленной задачей. Поэтому они очень нравятся школьникам, и включение их во внеклассные занятия или другие игры по математике способствует развитию интереса учащихся.

Математические викторины .

Казалось бы, этот тип игры тоже мог бы быть включен в предыдущий тип игр, но ярко выраженной игровой ситуации в них не наблюдается. Математические викторины очень часто включаются в математические вечера, в занятии математического кружка, используются как этап другой математической игры.

Математические викторины легко организовать. В них может принять участие каждый желающий. Суть их заключается в том, что участникам задаются вопросы, на которые они должны ответить. Викторины проводятся по-разному, в зависимости от числа участников.

Если участников не очень много, то каждый вопрос или задача зачитываются человеком, проводящим викторину. На обдумывание ответа дается несколько минут. Отвечает тот, кто первым поднимет руку. Если ответ не полный, то можно предоставить возможность высказаться еще и другому участнику. За правильный ответ присуждается определенное количество очков.

Если же участников много, то текст всех вопросов и задач выписываются на доске, на отдельных плакатах или раздаются школьникам на отдельных листах, где они пишут ответы и краткое объяснение. Потом листочки сдаются жюри, где они проверяются, подсчитываются баллы.

Победителями становятся участники, набравшие наибольшее количество баллов.

Возможны случаи, когда викторины проводятся для команд. В этом случае каждой команде зачитывается определенное количество вопросов, возможны варианты ответов на них. Участники команд должны за определенное время ответить правильно на как можно большее количество вопросов. Выигрывает команда, давшая больше правильных ответов. Вопросы, задаваемые командам должны быть равноценными.

С помощью викторин можно не только заинтересовать учащихся математикой, используя необычной формы вопросы, но и проконтролировать уровень их знаний предмета (особенно в том случае, когда она проходит в письменной форме).

Рассмотренные выше игры могут включаться во внеклассные занятия по отдельности, а могут и в своей совокупности составлять большой блок игр, занятие в игровой форме, то есть большую математическую игру. Эта игра может быть проведена в различных формах. В зависимости от характера проведения таких игр различают следующие виды:

Игры по станциям .

В играх данного типа обычно перед участниками ставиться определенная игровая цель, в зависимости от общего сюжета игры, ее темы. Это может быть цель найти клад, собрать карту, дойти до конечной станции (таинственного города) и т.п.

Как видно из названия данные игры проводятся по станциям. В такой игре обычно участвуют команды, и именно они ходят по станциям, выполняют на каждой из них определенные задания и получают за это баллы, часть карты, либо подсказки, помогающие достичь участникам поставленной перед ними цели. Каждая из станций представляет собой небольшую игру. Команды ходят по станциям, пользуясь специально выданными им листами-путеводителями. Игра по станциям проходит обычно в нескольких кабинетах, в которых располагаются различные станции. В таких играх участвуют обычно несколько классов, поэтому они являются массовыми и продолжительными по времени. Для проведения такой игры требуется много людей. В школе для проведения подобной игры по станциям могут привлекаться старшие классы. Итогом игры является достигнутая командами цель игры.

Игры такого вида имеют необычный сюжет и часто являются театрализованными, то есть в ее начале разыгрывается какая-нибудь ситуация с помощью которой перед участниками ставится цель игры. Отдельные станции, по которым будут ходить участники, тоже могут быть театрализованы. Эта необычность очень привлекает и заинтересовывает не только участников игры, но и учеников принимающих участие в проведении игры. У школьников возникает интерес к математике, они по новому воспринимают этот, казалось бы, «скучный» и «сухой», неинтересный предмет.

К такому виду игр можно отнести «Математические следопыты» , «Математический поезд» , «Математический кросс » и другие.

Математические конкурсы .

Математические конкурсы можно рассматривать как часть большой игры или вечера (например, конкурс капитанов). Так же конкурс можно рассматривать как соревнование по выполнению какой-либо работы или проекта (конкурс на лучшую математическую сказку, конкурс на лучшую математическую газету и т.п.). Здесь же будут рассматриваться математические конкурсы как отдельные самостоятельные мероприятия, математические игры, в состав которых могут входить как их элементы другие более мелкие математические игры (например, викторины, эстафеты и др.).

Математические конкурсы – это соревнования, которые могут проводиться как между отдельными участниками игры, так и между командами. Это наиболее часто используемый тип математических игр. К нему можно отнести такие игры как «Звездный час» , «Счастливый случай» , «Колесо математики» и другие.

В конкурсе всегда есть победитель и он единственный, возможен случай и ничьей. При проведении математических конкурсов обычно присутствуют не только сами участники игры, но и зрители, болеющие за них. Поэтому в таких видах игр всегда предусмотрены и задания (конкурсы) для зрителей.

Особой подготовки участников к игре не требуется. В основном нужно лишь собрать команду и разобрать примерные задания. Данный тип игр настолько разнообразен и универсален, что позволяет проводить внеклассные занятия по математике как можно чаще в форме математической игре, и тем самым привлечь к ним больше учеников. Школьники заинтересовываются и даже иногда сами изъявляют желание придумать свою математическую игру и провести ее.

КВНы .

КВН – это тоже математический конкурс. Но он настолько популярен и необычен, что отнесем его в отдельную группу математических игр.

КВНы проводятся между несколькими командами. Эти команды заранее готовятся к игре, придумывают приветствие другим командам, домашнее задание, в виде представления.

Сам КВН тоже может проводиться в виде какого-нибудь представления, разыгрываются небольшие сценки между конкурсами, может быть в форме путешествия. Помещение, в котором проходит игра, ярко и красочно оформляется. На КВНах обычно присутствуют зрители, поэтому предусматривается и конкурс для зрителей. Так же эта игра предполагает наличие жюри.

Все КВНы строятся приблизительно по одному плану, в которых входят традиционные конкурсы:

1. Приветствие. В этом конкурсе команда должна пояснить свое название, рассказать о членах команды, обратиться к соперникам и жюри.

2. Разминка (для команд и болельщиков). Командам даются задания, на которые они должны как можно быстрее ответить. Может проходить в форме викторины.

3. Пантомима. В этом конкурсе обыгрываются различные математические понятия.

4. Конкурс художников. В этом конкурсе нужно изобразить, используя геометрические фигуры, графики функций и т.п., изобразить что-либо, а так же придумать рассказ по своему рисунку.

5. Домашнее задание. Оно должно соответствовать теме КВНа и быть представлено в виде сценки, песни или стихотворения.

6. Конкурс капитанов. Капитанам команд предлагается решить более сложные задачи, чем в разминке. Этот конкур может пройти в форме какой-нибудь небольшой игры-соревнования.

7. Специальные конкурсы. Должны соответствовать теме КВНа, их может быть несколько. Например, исторический конкурс, расшифровка ребуса и др.

Каждый конкурс оценивается жюри определенным количеством баллов, и после его окончания жюри объявляет результаты. В КВНе выигрывает та команда, которая набрала наибольшее количество баллов по результатам всех конкурсов.

Математические КВНы имеет такую популярность из-за своей необычной формы проведения и из-за имеющейся на телевидении одноименной передачи, являющейся прообразом данного вида игр. В этой игре участники имеют возможность проявить не только свои математические, но и творческие способности. Школьники с удовольствием принимают участие в таких играх не только как участники, но и как зрители. Математические КВНы таким образом способствуют развитию интереса к одному из труднейших школьных предметов – математике, которая в этой игре совсем не кажется трудной, а наоборот становиться интересной и занимательной.

Игры-путешествия .

Такой тип игры отличается от остальных (в частности от игр по станциям) тем, что они проходят в отдельно взятом помещении, дети не ходят по станциям, а сидят на своих местах и принимают участие в предложенных им заданиях, отвечают на них. Игры-путешествия проходят обычно в театрализованной форме. Перед учащимися разыгрывается спектакль, в течение которого им необходимо выполнять некоторые задания, для того, чтобы помочь героям достичь их, узнают новые факты. Поэтому данный тип игр носит не только развлекательный характер, но и обучающий. Во время игры учащиеся могут мысленно попадать в другие страны, в различные выдуманные города, встречать необычных героев, что очень нравится им, вызывает у них положительные эмоции. Результатом игры является цель, достигнутая героями спектакля с помощью учеников, как таковых победителей в таких играх нет, а есть лишь один победитель – все участники игры.

Такие игры проводятся в основном для младших классов. Такой тип игры как нельзя лучше подходит для детей младшего возраста, для того чтобы развить у них интерес к математике.

К такому виду игр можно отнести игру «Приключения Винни Пуха и Пяточка в стране математики» , «В гостях у царицы математики» и другие.

Математические лабиринты .

Данный тип игр был назван так, потому что по свой структуре напоминает лабиринт, с его запутанными ходами. В лабиринте каждый правильно сделанный поворот, поможет тебе выбраться из лабиринта. А если ты сделал хоть один неправильный поворот, то и выбраться из лабиринта не сможешь. Точно также устроены и математические лабиринты. Каждое правильно решенное задание игры приближает вас к верному конечному результату игры, а единственная ошибка может привести к неверному. Игра проходит поэтапно. Ответ на задание в каждом этапе определяет, на какой этап игры нужно идти дальше. В итоге ты приходишь к конечному результату. Именно он и проверяется. Это может быть ответ на задание последнего этапа, либо какая-нибудь картинка и т.п. Если конечный результат не верный, то надо искать на каком из этапов игры была совершена ошибка и, следовательно, проходить часть лабиринта заново. Таким образом, участники игры учатся не только правильно решать задачи, но проверять свои решения, находить ошибки.

Лабиринты могут быть как подвижными, так и тихими, командными и индивидуальными. Их можно проводить по отдельно взятой теме, тем самым, контролируя усвоение учащимися материала. Они могут включать в себя различные занимательные задачи.

Участвуя в игре, участники упорно и настойчиво пытаются достичь правильного результата игры, старательно решают задания и проверяют их, умственно трудятся. У детей воспитывается соответствующие качества личности, развивается интерес к математике.

Математическая карусель .

К этому виду игр относится одна игра, которая так и называется «Математическая карусель» . Отнести ее к другим играм довольно таки сложно, так как она имеет отличительные от всех, свойственные только ей особенности. Поэтому по моему мнению ее следует отнести к отдельному виду математических игр.

Игра является командной, проводиться обычно между несколькими классами, возможно даже между школами. Игра имеет два рубежа. Изначально команда находится на исходном рубеже. Важен так же порядок, в котором сидят участники команды, все ее участники должны иметь порядковый номер. Команде выдается задача. Если команда решит задачу, то первый ее участник отправляется на зачетный этап, где ему выдается зачетная задача, за которую команде и будут начисляться баллы. В это же время оставшиеся на исходном рубеже участники команды решают следующую задачу, правильное решение которой позволит перейти на зачетный рубеж следующему члену команды. Таким образом на зачетном рубеже зачетные задачи будут решать больше учеников. И так далее. Если же на зачетном рубеже ученики не правильно решают задачу, то участник с наименьшим порядковым номером возвращается на исходный рубеж. Вот поэтому то игра и называется «Математической каруселью», так как в ней постоянно происходит круговое движение участников.

За каждой командой должен следить отдельный человек (или за двумя командами), он же проверяет правильность решения задач, и соблюдение всех правил игры.

В такой игре принимают участие обычно сильные, увлекающиеся математикой, ученики. Их привлекает к участию в ней необычность самой игры, трудность предложенных задач и сложность получения баллов. Ведь баллы засчитываются только за решение задач на зачетном рубеже, которые обычно сложнее, чем на исходном рубеже. Познавательный интерес к математике у таких детей становиться еще больше.

Математические бои .

К такому виду игр относят непосредственно сам «Математический бой» , «Морской бой» , различные баталии.

В таких боях обычно участвуют две команды, которые соревнуются между собой в уровне имеющихся у них математических знаниях. Участвуют в боях обычно самые сильные и способные ученики в классе, по отношению к математике.

В таких играх также важно не только хорошо уметь решать задачи, но и правильно выбрать стратегию игры.

Правила математического боя:

Игра состоит из двух частей. Сначала команды получают условия задач и определенное время на их решение. По истечении этого времени начинается собственно и сам бой. Бой состоит из нескольких раундов. В начале каждого раунда одна из команд вызывает другую на одну из задач, решения которых еще не рассказывались. После этого вызванная команда сообщает, принимает ли она вызов, то есть согласна ли рассказывать решение этой задачи. Если да, то она выставляет докладчика, который должен рассказать решение, а вызвавшая команда выставляет оппонента, обязанности которого – искать в решении ошибки. Если нет, то докладчика обязана выставить команд, которая вызвала, а отказавшаяся выставить оппонента.

Ход раунда: В начале раунда докладчик рассказывает решение. Пока доклад не окончен, оппонент может задавать вопросы только с согласия докладчика. После окончания доклада оппонент имеет право задавать вопросы докладчику. Если в течение минуты оппонент не задал ни одного вопроса, то считается, что у него нет вопросов. Если докладчик в течение минуты не начинает отвечать на вопрос, то считается, что у него нет ответа. После окончания диалога докладчика и оппонента жюри задает свои вопросы. При необходимости оно может вмешиваться и раньше.

Если по ходу дискуссии жюри установило, что оппонент доказал отсутствие у докладчика решения и ранее не произошел отказ от вызова, то возможны два варианта. Если вызов на этот раунд был принят, то оппонент получает право (но не обязан) рассказать свое решение. Если оппонент взялся рассказывать свое решение, то происходит полная перемена ролей: бывший докладчик становится оппонентом и может зарабатывать баллы за оппонирование. Если же вызов на этот раунд был принят, то говорят, что вызов был не корректным. В этом случае перемена ролей не происходит, а команда, вызывавшая некорректно, должна снова вызывать соперника в следующем раунде. Во всех остальных случаях в следующем раунде вызывает та команда, которая была вызвана в текущем раунде.

Каждая задача оценивается в 12 баллов, которые по итогам раунда распределяются между докладчиком, оппонентом и жюри.

Бой заканчивается, когда не остается необсужденных задач либо когда одна из команд отказывается от вызова, а другая команда отказывается рассказывать решение оставшихся задач.

Если по окончании боя результаты команд отличаются не больше чем на 3 балла, то считается, что бой закончился вничью. В противном случае побеждает та команда, которая набрала больше баллов. Может в игре выиграть и жюри.

Этот вид игры являются довольно таки необычными и позволяют привлечь школьников к внеклассной работе по математике, развить их познавательный интерес к предмету.

Разновозрастные игры.

Этот вид игры проводится в основном между разновозрастными командами в малокомплектной школе. Например, игра «Математический хоккей» . Правила этой игры таковы:

Игра проводится для нескольких команд. Команда состоит не менее чем из 6 человек. Игра напоминает настоящий хоккей. Отличие лишь в том, что команд в игре может участвовать больше, чем в обычном хоккее (больше двух), и бьются они не друг против друга. Задача каждой команды не допустить, чтобы в ее ворота забили гол. Выигрывает та команда, которой это лучше удалось по сравнению с остальными. Встреча может проходить в классной комнате. Каждая команда занимает один ряд. «Выбрасывание шайбы» состоит в том, что командам сообщается условие первой задачи: либо читается вслух, либо условие пишется на доске. В течение 5 минут ее решает «центральный нападающий» - ученик 5 класса, сидящий за первой партой. Если пятиклассник ее решит, то считается, что «шайба» отбита. Если же не решит, то решение дают «два крайних нападающих» - ученики 6 класса. Если и они не решат в течение 2-3 минут, то судейская бригада, в которую целесообразно включить девятиклассников, предлагает дать решение двум «защитникам» - ученикам 7 класса. И если они «шайбу не отобьют», то вся надежда на «вратаря» - ученика 8 класса. Для этого выбирается наиболее подготовленный ученик. В случае его неудачи «шайба» считается заброшенной в «ворота» команды. «Шайбы» вбрасываются через каждые 3-5 минут, чтобы поддерживать темп игры. Внешняя занимательность игры возбуждает интерес школьников к математике.

Выше перечисленные виды игр могут переплетаться, игра может сочетать в себе элементы разных игр. В связи с этим, на практике наблюдается многообразие математических игр. Проведение внеклассных занятий в форме математических игр позволит их разнообразить, привлечь к ним разные группы учащихся: интересующихся математикой, не проявляющих явного интереса, слабых, сильных и т.п. Правильно выбранный вид математической игры с учетом возраста и типа учащихся способствует привлечению большего числа школьников к внеклассной работе по математике, возникновения у них интереса к предмету.

2.4 Структура математической игры

Математическая игра имеет устойчивую структуру, которая отличает ее от всякой другой деятельности.

Основными структурными компонентами математической игры являются: игровой замысел , правила, игровые действия , содержание , оборудование , результат игры . Остановимся более подробно на отдельных структурных компонентах математической игры.

Игровой замысел – первый структурный компонент игры. Он выражен, как правило, в названии игры. Игровой замысел заложен в той задаче или системе задач, которые нужно решить в течение игрового процесса. Игровой замысел часто выступает в виде вопроса, как бы проектирующего ход игры, или в виде загадки. В любом случае он придает игре не только развлекательный, но и познавательный характер, предъявляет к участникам игры определенные требования в отношении знаний.

Любая игра имеет правила , которые определяют порядок действий и поведения учащихся в процессе игры, способствует созданию непринужденной обстановки, но в то же время рабочей. Правила математических игр должны разрабатываться с учетом поставленных целей и индивидуальных возможностей учащихся. Этим создается условие для проявления самостоятельности, настойчивости, мыслительной активности, для возможности появления у каждого чувства удовлетворенности, успеха, интереса. Кроме того, правила игры воспитывают у школьников умение управлять своим поведением, подчиняться требованиям коллектива.

Существенной стороной математической игры являются игровые действия . Они регламентируются правилами игры, способствуют познавательной активности учащихся, дают им возможность проявить свои способности, применить имеющиеся знания, умения и навыки для достижения цели игры. Учитель же, как руководитель игры, направляет ее в нужное русло, при необходимости активизирует ее ход разнообразными приемами, поддерживает интерес к игре, подбадривает отстающих.

Основой математической игры является ее содержание . Содержание заключается в усвоении, закреплении, повторении тех знаний, которые применяются при решении задач, поставленных в игре, а так же в проявлении своих способностей к математике, творческих способностей.

К оборудованию математической игры относятся различные средства наглядности, раздаточный материал, то есть все то, что необходимо при проведении игры, ее конкурсов.

Математическая игра имеет определенный результат , который является финалом игры, придает игре законченность. Он выступает, прежде всего, в форме решения поставленной задачи, в достижении поставленной перед учащимися цели игры. Полученный результат игры дает школьникам моральное и умственное удовлетворение. Для учителя же результат игры является показателем уровня достижений учащихся в усвоении знаний и их применении, наличия математических способностей, интереса к математике.

Все структурные элементы игры взаимосвязаны между собой. Отсутствие одного из них разрушает игру. Без игрового замысла и игровых действий, без организующих игру правил, математическая игра или невозможна или теряет свою специфическую форму, превращается в выполнение упражнений и заданий.

Сочетание всех элементов игры и их взаимодействие повышают организованность игры, ее эффективность, приводит к желаемому результату. Такая игра способствует возникновению желания участвовать в ней, пробуждает положительное отношение к ней, повышает познавательную активность и интерес.

2.5 Организационные этапы математической игры

Для того чтобы провести математическую игру, и ее результаты были бы положительными, необходимо провести ряд последовательных действий по ее организации. К организации математической игры относят ряд этапов. Каждый этап как часть единого целого включает определенную логику действий педагога и учащихся.

Первый этап – это предварительная работа . На этом этапе происходит выбор самой игры, постановка цели, разработка программы ее проведения. Выбор игры и ее содержания в первую очередь зависит от того, для каких детей она будет проводиться, их возраст, интеллектуальное развитие, интересы, уровни общения и т.п. Содержание игры должно соответствовать поставленным целям, так же большое значение имеет время проведения игры, ее продолжительность. Одновременно с этим уточняется место и время проведения игры, готовиться необходимое оборудование. На этом этапе также происходит предложение игры детям. Предложение может быть устного и письменного характера, в него могут входить краткое и точное объяснение правил и техники действий. Главная задача предложения математической игры заключается в возбуждении интереса учащихся к ней.

Второй этап подготовительный . В зависимости от того или иного вида игры этот этап может отличаться по времени и содержанию. Но все-таки у них есть общие черты. Во время подготовительного этапа учащиеся знакомятся с правилами игры, происходит психологический настрой на игру. Учитель организует детей. Подготовительный этап игры может проходить как непосредственно перед самой игрой, так и начаться заблаговременно до проведения самой игры. В этом случае учащиеся предупреждаются о том, какого типа задания будут в игре, какие правила у игры, что нужно подготовить (собрать команду, подготовить домашнее задание, представление и т.п.). Если игра проходит по какому-либо учебному разделу предмета математики, то школьники смогут повторить его и прийти на игру подготовленными. Благодаря данному этапу дети заранее заинтересовываются игрой и с большим удовольствием участвуют в ней, получая при этом положительные эмоции, чувство удовлетворенности, что способствует развитию у них познавательного интереса.

Третий этап – это непосредственно сама игра , воплощение программы в деятельности, реализация функций каждым участником игры. Содержание данного этапа зависит от того, какая игра проводиться.

Четвертый этап – это заключительный этап или этап подведения итогов игры . Данный этап является обязательным, так как без него игра будет не полной, не законченной, потеряет смысл. Как правило, на этом этапе определяются победители, происходит их награждение. Так же на нем подводятся общие итоги игры: как прошла игра, понравилась ли она учащимся, нужно ли еще проводить подобные игры и т.п.

Наличие всех этих этапов, их четкая продуманность делаю игру целостной, завершенной, игра производит наибольший положительный эффект на учащихся, достигается цель – заинтересовать школьников математикой.

2.6 Требования к подбору задач

Любая математическая игра предполагает наличие задач, которые должны решить школьники, участвующие в игре. А каковы требования к их подбору? У разных видов игр они различны.

Если взять математические мини-игры , то задачи входящие в них могут быть как по какой-нибудь теме школьной программы, так и необычные задачи, оригинальные, с увлекательной формулировкой. Чаще всего они бывают однотипные, на применение формул, правил, теорем, отличающиеся лишь по уровню сложности.

Задачи для викторины должны быть с легко обозримым содержанием, не громоздкие, не требующие сколько-нибудь значительных выкладок или записей, в большинстве своем доступные для решения в уме. Задачи типовые, решаемые обычно на уроках, не интересны для викторины. Помимо задач, в викторину можно включить различные вопросы по математике. Задач и вопросов в викторине обычно бывает 6-12, викторины могут быть посвящены какой-то одной теме.

В играх по станциям , задачи на каждой станции должны быть однотипными, возможно использование задач не только на знание материала предмета математики, но и задания, не требующие глубоких математических знаний (например, спеть как можно больше песен, в тексте которых присутствуют числа). Набор задач на каждом из этапов зависит от того, в какой форме он проводится, какая мини-игра используется.

К задачам математических конкурсов и КВНов предъявляются следующие требования: они должны быть оригинальными, с простой и увлекательной формулировкой; решение задач не должно быть громоздким, требующим долгих вычислений, могут предполагать несколько решений; должны быть разными по уровню сложности и содержать материал не только школьной программы по математике.

Для игр-путешествий отбираются легкие задачи, доступные для решения учащимися, в основном по программному материалу, не требующие больших вычислений. Можно использовать задачи занимательного характера.

Если игра планируется проводиться для слабых учеников, не проявляющих интереса к математике, то лучше всего подобрать такие задачи, которые не требуют хороших знаний по предмету, задачи на сообразительность, или совсем не сложные, элементарные задания.

Так же в игры можно включать задачи исторического характера, на знание каких-нибудь необычных фактов из истории математике, практического значения.

В лабиринтах обычно используются задания на знание материала любого из разделов курса школьной математики. Трудность таких задач увеличивается по мере продвижения по лабиринту: чем ближе к концу, тем сложнее задача. Возможно проведение лабиринта с использованием задач исторического содержания и задач на знание материала, не входящего в школьный курс математики. Задачи, требующие смекалки и нестандартности мышления, тоже могут быть использованы в лабиринтах.

В «математической карусели» и математических боях обычно используются задачи повышенной трудности, на глубокое знание материала, нестандартность мышления, так как для их решения отводится достаточно много времени и в таких играх участвуют в основном только сильные ученики. В некоторых математических боях задачи могут быть не сложными, а иногда просто занимательными, всего лишь на сообразительность (например, задания для капитанов).

Возможно, использовать задачи на закрепление или углубление изученного материала. Такие задачи могут привлечь сильных учеников, вызовут у них интерес. Дети, пытаясь решить их, будут стремиться получить новые еще не известные им знания.

Учитывая все требования, возраст и тип учеников можно разработать такую игру, что она будет интересна всем участника. На уроках дети решают достаточно много задач, все они одинаковые и не интересные. Придя на математическую игру, они увидят, что решать задачи совсем не скучно, они бывают не такие сложные или наоборот однообразные, что у задач могут быть необычные и занятные формулировки, и не менее занятные решения. Решая задачи практического значения, они осознают всю значимость математики как науки. В свою очередь игровая форма, в которой будет проходить решение задач, придаст всему мероприятию совсем не учебный, а занимательный характер и дети не заметят, что они учатся.

2.7 Требования к проведению математической игры

Соблюдение всех требований к проведению математической игры способствует тому, что внеклассное мероприятие по математике пройдет на высоком уровне, оно понравится детям, будут достигнуты все поставленные цели.

Учителю во время игры должна принадлежать ведущая роль в ее проведении . Учитель должен следить за порядком на игре. Отступление от правил, терпимость к мелким шалостям или дисциплины, в конечном счете, могут привести к срыву занятия. Математическая игра будет не только не полезной, она принесет вред.

Учитель является еще и организатором игры. Игра должна быть четко организована, выделены все ее этапы, от этого зависит успех игры. Данному требованию следует придавать самое серьезное значение и иметь его в виду при проведении игры, особенно массовой. Соблюдение четкости этапов не позволит превратить игру в сумбурную, не понятную последовательность действий. Четкая организация игры так же предполагает, что весь раздаточный материал и оборудование, необходимое для проведения того или иного этапа игры, будет использовано в нужное время и никаких технических задержек в игре не будет.

При проведении математической игры важно следить за сохранением интереса школьников к игре . При отсутствии интереса или угасании его ни в коем случае не следует принудительно навязывать игру детям , так как в этом случае она теряет свою добровольность, обучающее и развивающее значение, из игровой деятельности выпадает самое ценное – ее эмоциональное начало. При потере интереса к игре учителю следует принять действия, ведущие к изменению обстановки. Этому могут служить эмоциональная речь, приветливая обстановка, поддержка отстающих.

Очень важно проводить игру выразительно . Если учитель разговаривает с детьми сухо, равнодушно, монотонно, то дети относятся к игре безразлично, начинают отвлекаться. В таких случаях бывает трудно поддерживать их интерес, сохранять желание слушать, смотреть, участвовать в игре. Нередко, это и совсем не удается, и тогда дети не получают от игры никакой пользы, она вызывает у них только утомление. Возникает отрицательное отношение к математическим играм и математике в целом.

Учитель сам должен в определенной степени включаться в игру , являться ее участником, иначе руководство и влияние его будут недостаточно естественными. Он должен положить начало творческой работе учащихся, умело ввести их в игру.

Учащиеся должны понимать смысл и содержание всей игры , что сейчас происходит и что делать дальше. Все правила игры должны быть разъяснены участникам. Это происходит в основном на подготовительном этапе. Математическое содержание должно быть доступно пониманию школьников. Все препятствия должны быть преодолены, предлагаемые задания должны быть решены самими учащимися , а не учителем или его помощником. В противном случае игра не вызовет интереса и будет проводиться формально.

Все участники игры должны активно участвовать в ней , заняты делом. Длительное ожидание своей очереди для включения в игру снижает интерес у детей к этой игре. Легкие и сложные конкурсы должны чередоваться . По содержанию она должна быть педагогична, зависеть от возраста и кругозора участников . В процессе игры учащиеся должны математически грамотно проводить свои рассуждения , математическая речь должна быть правильной.

Во время проведения игры должен быть обеспечен контроль за результатами , со стороны всего коллектива учеников или выбранных лиц. Учет результатов должен быть открытым, ясным и справедливым. Ошибки в учете неясности в самой организации учета приводят к несправедливым выводам о победителях, а, следовательно, и к недовольству участников игры.

Игра не должна включать даже малейшую возможность риска , угрожающего здоровью детей . Наличие необходимого оборудования , которое должно быть безопасно, удобно, пригодно и гигиенично. Очень важно, чтобы во время игры не унижалось достоинство участников .

Любая игра должна быть результативна . Результатом может быть победа, проигрыш, ничья. Только законченная игра, с подведенным итогом может сыграть положительную роль, произвести на учащихся благоприятное впечатление.

Интересная игра, доставившая детям удовольствие, оказывает положительное влияние на проведение последующих математических игр, их посещение. При проведении математических игр забавность и обучение надо сочетать так, чтобы они не мешали, а наоборот помогали друг другу.

Математическая сторона содержания игры всегда должна отчетливо выдвигаться на первый план . Только тогда игра будет выполнять свою роль в математическом развитии детей и воспитание интереса к математике.

Это все основные требования, предъявляемые к проведению математической игры.

Из всего сказанного выше можно сделать вывод, что математическую игру целесообразно применять на внеклассных занятиях по математике. Она вносит необычность во внеклассную работу по математике, многообразие ее видов позволяет разнообразить внеклассные занятия по математике, каждый раз удивлять учащихся новой формой и содержанием игры. Это все вызывает интерес у школьников. А чтобы математическая игра как можно больше способствовала развитию познавательного интереса, нужно при ее подготовке учитывать все требования к подбору задач и проведению самой игры, правильно выбрать тип игры и ее содержание.

Вывод: Подведем итоги третьей главы. Из нее следует, что:

Существуют различные подходы к определению понятия игры, но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта.

Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике.

Математическая игра имеет свои цели, задачи, функции и требования. Основная цель игры по математике – развитие устойчивого познавательного интереса к предмету через имеющееся многообразие математических игр.

Математические игры очень разнообразны. Их можно классифицировать по назначению, по массовости, по реакции, по темпу и др. Так же можно выделить классификацию по схожести правил и характера проведения, которая включает в себя следующие виды игр: настольные, мини-игры, викторины, по станциям, конкурсы, КВНы, путешествия, лабиринты, математическую карусель, бои и разновозрастные игры.

Игра по математике имеет свою структуру, куда входят: игровой замысел, правила, содержание, оборудование, результат.

Игра проходит по следующим этапам: предварительная работа, подготовительный этап, сама игра, заключение.

Для того, чтобы игра прошла успешно нужно учитывать требования к подбору задач и требования к проведению самой игры, что поможет оставить у учащихся приятные впечатления от нее, и следовательно появления интереса к математике.

Глава IV. Опытное преподавание

§1 Анкетирование учителей и учеников

Для того, чтобы показать эффективность использования математической игры для развития познавательного интереса одного теоретического обоснования недостаточно. Любая теория должна быть подтверждена практикой. В связи с этим в школе №37 города Кирова и безводнинской средней школе (БСШ) был проведен опрос среди учеников 5-9 классов. Всего в опросе участвовало 75 человек (48 учеников школы №37 города Кирова и 27 учеников БСШ).

Анкета включала в себя следующие вопросы:

1. Проводились ли у вас когда-нибудь игры по математике?

2. Нравится ли вам посещать такие мероприятия? Почему?

3. Что вам понравилось и не понравилось в математической игре, в которой вы участвовали?

4. После проведения игры стала ли вам больше нравиться математика?

5. Стали ли вы охотней заниматься на уроках математики, после участия в математической игре?

6. Хотели бы вы еще поучаствовать в математической игре?

Результаты анкетирования учащихся были следующими:

На первый вопрос: «Проводились ли у вас когда-нибудь игры по математике?», все учащиеся ответили положительно. Это значит, что и в городской и в сельской школе используется такая форма внеклассной работы как математическая игра, и дети в большинстве своем посещают такие мероприятия.

На второй же вопрос: «Нравится ли вам посещать такие мероприятия?», большинство учащихся ответили: «Да», а именно, 59 человека, что составляет 79% от всего количества опрашиваемых. Отрицательно ответили 6 человек, что составляет 8% от всех опрошенных. Остальные же 10 человек ответили: «Не знаю» (6 человек – 8%) и «В зависимости от того, какая игра» (4 человека – 5%).

Данный вопрос еще предполагал пояснение причин, положительного либо отрицательного отношения к математическим играм. Свое положительное или отрицательное отношение к играм по математике учащиеся объясняют следующими причинами:

Следует заметить, что основной причиной отрицательного отношения к математическим играм является отрицательное отношение к самому предмету математике и к учебе в целом. Но таких учеников значительно меньше, по сравнению с остальными.

Для того чтобы выделить достоинства и недостатки математической игры по сравнению с другими формами внеклассной работы, ученикам был задан вопрос: «Что вам понравилось и что не понравилось в математической игре, в которой вы участвовали?» Ученики ответили следующим образом:

Большинству учащихся в математической игре, проводимой для них, нравится все. Учащимся, которые, судя по всему, любят математику, нравится в математической игре то, что в ней по мере того, что весело и забавно, надо еще и думать. Наиболее значимым недостатком математической игры является дисциплина, шум и возможно плохая организация. Так же есть такие ответы как – не сложные задания и трудные задачи. Поэтому при разработке математической игры учителю нужно продумывать задания, как для сильных, так и для слабых учащихся. И вообще, математическая игра должна быть продумана «до мелочей», чтобы во время ее проведения не возникало споров.

Вопросы 4 и 5 являются наиболее значимыми для данного исследования. Учащиеся на них ответили следующим образом:

Как видно по диаграмме большинство учащихся после математической игры заинтересовались математикой, стали охотнее заниматься на уроках по этому предмету.

На 6 вопрос: «Хотели бы вы еще поучаствовать в математической игре?» только 6 учеников ответили отрицательно из 75, 3 ответили, что не знают, 2 человека считают, что наверно и 64 человека с удовольствием бы посетили такое мероприятие еще раз. Это говорит о том, что внеклассные занятия, проводимые в форме математической игры, привлекают многих школьников. Учащиеся с удовольствием принимают в них участие, многие из них осознают и то, что таким необычным способом они узнают много нового, учатся. Благодаря таким мероприятиям в школе как математическая игра, математика открывается детям с другой стороны – оказывается, это не такой уж скучный предмет как им казалось. Ученики охотнее посещают не только внеклассные занятия, но и активнее работают на уроках математики.

Чтобы сделать правильные выводы по значимости математической игры для развития познавательного интереса у школьников, был так же проведен опрос среди учителей математики, которые имеют большой опыт проведения внеклассной работы в школе. Всего было опрошено 12 учителей математики: 8 учителей математики школы №37 города Кирова и 4 учителя БСШ. Анкета для учителей состояла из следующих вопросов:

1. Как вы считаете, нужно ли применять математическую игру во внеклассной работе по математике?

2. Применяете ли вы такую форму внеклассной работы как математическая игра?

3. В каких классах чаще всего вы применяете математическую игру не внеклассных занятиях по математике?

4. Как относятся к математической игре ученики 5-7, 8-9, 10-11 классов?

5. В чем вы видите эффективность и недостатки применения математической игры как формы внеклассной работы по математике?

6. Какие трудности применения математической игры во внеклассной работе по математике вы бы выделили?

7. Как изменилось отношение учеников к предмету после проведения математической игры?

На первый вопрос все учителя ответили положительно.

Из ответов на второй вопрос: «Применяете ли вы математическую игру?» следует, что всего один учитель не применяет такую форму внеклассной работы как математическая игра. Остальные учителя (11 человек) хотя бы раз применяли математическую игру во внеклассной работе по математике. Применяют математическую игру учителя чаще всего в 5-9 классах (4 учителя), 5-8 классах (4 учителя), 5-7 классах (3 учителя). Объясняют учителя это тем, что в этом возрасте дети лучше воспринимают игру и заинтересовать учеников математикой лучше в этом возрасте. Так же учителя отмечают, отвечая на четвертый вопрос анкеты, что ученики 5-7 классов любят участвовать в таких внеклассных мероприятиях, 8-9 классы хорошо относятся к математическим играм, но не ко всем. Ученики 10-11 классов обычно уже серьезно не воспринимают игру на внеклассных занятиях по математике, их интересуют какие-либо конкретные вопросы, в основном связанные с будущей профессией, предстоящими экзаменами. Но 4 учителя считают, что, независимо от возраста, все ученики хорошо относятся к математическим играм.

Ответы на 5 и 6 вопрос пересекаются, а именно, учителя выделяют одни и те же недостатки и трудности проведения математической игры.

Некоторые учителя замечают, что с использованием компьютера трудностей в подготовке игры стало намного меньше.

Как видно из этой таблицы, все учителя отмечают повышение интереса к математике после использования математической игры. То же самое, они пишут при ответе на последний вопрос анкеты (7 вопрос), т.е. после проведения математической игры учащиеся с большей охотой посещают внеклассные занятия и уроки по математике, повышается интерес к предмету, что способствует лучшему усвоению материала.

По результатам двух анкет можно сделать вывод, что и ученики и учителя отмечают большую значимость и эффективность применения математической игры во внеклассной работе по математике для развития познавательного интереса.

§2 Наблюдения, личный опыт

Наряду с анкетированием и изучением методической и психолого-педагогической литературы, мною была проведена собственная опытная работа. Цель данной работы заключалась в том, чтобы исследовать, как влияет математическая игра на повышение познавательного интереса к математике. Оценка изменения познавательного интереса происходила по следующим критериям: успеваемость, т.е. происходит ли рост успеваемости вследствие применения математической игры во внеклассных занятиях по математике; активность, а именно, повышается ли активность учащихся на уроках и во внеклассной работе по мере роста познавательного интереса. Для этого использовались такие методы как наблюдение, опрос, сравнение.

Опытная работа проводилась в школе №37 города Кирова. Для ее проведения были выбраны два класса - 9 В и 9 Г. В 9 Г на внеклассном занятии по математике была проведена игра, по теме «Системы уравнений. Графический метод решения». Позднее эта тема должна была изучаться на уроках алгебры. Следует заметить, что графический способ решения системы уравнений учащимся был уже известен. Поэтому рассматриваемый материал на внеклассном занятии не являлся для учащихся новым.

На внеклассном занятии для учащихся проводилась математическая игра «Лабиринт». Суть ее заключается в том, что учащимся раздаются карточки, на которых изображена схема лабиринта и задания, которые надо решить, чтобы пройти лабиринт. Учащиеся должны, решая системы уравнений и получая на них ответы, двигаться в соответствующем направлении по лабиринту (соответствующем номеру ответа). Путь должен отмечаться на схеме лабиринта. В конце игры проверяется маршрут, по которому ученик двигался в лабиринте, и ответ, полученный при выходе из лабиринта.




(-2;-3) (1;0) (1;0)

(-4;-5) (-2;-3)


(1;0), (3;-2) (1;0), (-1;-2)

нет решений (2;-2) (1;0), (2;2)

(1;2), (2;1), (1;-2), (2;-1),

(-1;-2), (-2;-1) (-1;2), (-2;1)

(3;2), (1;0) (1;0), (2;3)



нет (3;-2),(-3;-2), (2;-3),(3;2),

решений (2;3),(-2;3) (-2;-3),(-3;2)

(-1;4), (4;9) (4;9)


После проведения игры и подведения итогов был проведен опрос, в котором спрашивалось о том, понравилась ли игра ученикам и почему. Большинство ребят ответили, что игра им понравилась. В основном школьники отметили то, что проведенная игра была полезна для них: они повторили графический способ решения систем уравнений, а это им пригодится на уроках. Так же дети отметили, что такая форма занятий необычна и увлекательна. Все стремились выиграть, а чтобы выиграть надо уметь решать системы уравнений, это заставило их думать. Большинство учеников испытывали радость и удовлетворение оттого, что смогли правильно решить задания и правильно пройти лабиринт. Те дети, которые не успели пройти лабиринт или прошли его не правильно, пожелали взять карточки домой и попытаться еще раз пройти его, найти допущенные ими ошибки.

Следующим этапом исследования было наблюдение за работой учащихся на уроке, после прошедшей на кануне математической игры. Так как дети успели повторить графический способ решения системы уравнений на внеклассном занятии, то на уроке они быстро усваивали материал, все очень активно желали выйти к доске и показать свои знания, получить положительную оценку. По сравнению с предыдущими уроками, этот урок был более эффективны, класс успел рассмотреть больше материала за урок, чем другие 9-е классы. В частности 9 В класс вел себя на аналогичном уроке не так активно, рассмотрел и решил меньше примеров, чем 9 Г класс.

Для более точной оценки повышения интереса к математике во всей параллели 9 классов была проведена проверочная работа по данной теме. Результаты оказались следующими:

9 Г класс: 10 человек – положительные оценки (4-5),

8 человек – удовлетворительные оценки (3),

2 человека – неудовлетворительные оценки (2).

9 В класс: 11 человек – положительные оценки (4-5),

11 человек – удовлетворительные оценки (3),

4 человека – неудовлетворительные оценки (2).

В процентном соотношении:

Как видно из диаграмм, хоте не на много, но результаты проверочной работы в 9 Г классе лучше, чем в 9 В классе. Отмечу, что по успеваемости 9 Г класс уступает 9 В классу.

Также можно провести сравнение результатов данной проверочной работы и предыдущей. Изобразим результаты обеих работ в виде графиков.

Как видно из диаграммы, успеваемость по алгебру стала лучше. Следовательно, повышение познавательного интереса способствует не только активность на уроках, но и улучшается успеваемость по предмету.

Аналогичная работа была проведена с классом и по геометрии, а именно, математическая игра по теме сложение векторов (смотри приложение).

Помимо того, что математические игры могут проводиться по отдельным темам, в соответствии со школьной программой, можно проводить и просто занимательные игры по математике. Например, мною была проведена игра «Морской бой» для 7 классов школы №27 города Кирова. Цель этой игры заключалось в том, чтобы заинтересовать учеников математикой. Игра «Морской бой» имеет развлекательный характер, задания в ней не сложные, рассчитаны на все типы учащихся (интересующихся и не интересующихся математикой), для решения заданий требуется лишь сообразительность и смекалка (разработку игры смотри в приложении).

К результатам проведения этой игры можно отнести то, что дети стали с большей охотой посещать внеклассные занятия по математике. На игре, в виде зрителей, присутствовали и дети из других классов. Им так понравилась игра, что они попросили и у них в классе провести такую игру.

Итак, как показывает мой личный опыт, математическая игра в значительной степени способствует развитию у школьников познавательного интереса к математике.

Вывод: По данной главе можно сделать вывод, что как практика учителей со стажем, так и мой личный опыт подтверждают выдвинутую гипотезу: использование математической игры во внеклассной работе по математике способствует развитию познавательного интереса у учащихся к математике. На это указывают и мнения самих учеников, и повышение успеваемости, активности на уроках математики после проведения математических игр.

Заключение

В настоящей работе был проведен анализ методической и психолого-педагогической литературы, по вопросу использования математической игры во внеклассной работе по математике для развития познавательного интереса. Так же в работе были рассмотрены виды математических игр, технология проведения игры, структура, требования к подбору задач и проведению игры, особенности игры как формы внеклассной работы по математике, и самая ее главная особенность – укрепление и развитие познавательного интереса.

В исследовательской части были приведены результаты анкетирования учителей математики и учащихся, а также собственного опыта использования математической игры во внеклассной работе по математике. Выводы сделанные по этой части работы только подтверждают правильность выдвинутой гипотезы.

Как из теоретической части, так и из практической следует, что математическая игра отличается от других форм внеклассной работы по математике, тем, что может дополнять другие формы внеклассной работы по математике. А самое главное математическая игра дает возможность ученикам проявить себя, свои способности, проверить имеющиеся у них знания, приобрести новые знания, и все это в необычной занимательной форме. Систематическое использование математической игры во внеклассной работе по математике влечет за собой формирование и развития познавательного интереса у учащихся.

Подводя итоги всего выше сказанного, считаю, что математическая игра, как эффективное средство развития познавательного интереса, должна использоваться во внеклассной работе по математике как можно чаще.

Библиографический список

1. Аристова, Л Активность учения школьника [Текст] / Л. Аристова. – М: Просвещение, 1968.

2. Балк, М.Б. Математика после уроков [Текст]: пособие для учителей / М.Б. Балк, Г.Д. Балк. – М: Просвещение, 1671. – 462с.

3. Виноградова, М.Д. Коллективная познавательная деятельность и воспитание школьников [Текст] / М.Д. Виноградова, И.Б. Первин. – М: Просвещение, 1977.

4. Водзинский, Д.И. Воспитание интереса к знаниям у подростков [Текст] / Д.И. Водзинский. – М: Учпедгиз, 1963. – 183с.

5. Ганичев, Ю. Интеллектуальные игры: вопросы их классификации и разработки [Текст] // Воспитание школьника, 2002. - №2.

6. Гельфанд, М.Б. Внеклассная работа по математике в восьмилетней школе [Текс] / М.Б. Гельфанд. – М: Просвещение, 1962. – 208с.

7. Горностаев, П.В. Играть или учится на уроке [Текст] // Математика в школе, 1999. – №1.

8. Доморяд, А.П. Математические игры и развлечения [Текст] / А.П. Доморяд. – М: Гос. издание Физико-математической литературы, 1961. – 267с.

9. Дышинский, Е.А. Игротека математического кружка [Текст] / Е.А. Дышинский. – 1972.-142с.

10. Игра в педагогическом процессе [Текст] - Новосибирс, 1989.

11. Игры – обучение, тренинг, досуг [Текст] / под ред. В.В. Перусинского. – М: Новая школа, 1994. - 368с.

12. Калинин, Д. Математический кружок. Новые игровые технологии [Текст] // Математика. Приложение к газете «Первое сентября», 2001. - №28.

13. Коваленко, В.Г. Дидактические игры на уроках математики [Текст]: книга для учителя / В.Г. Коваленко. – М: Просвещение, 1990. – 96с.

14. Кордемский, Б.А. Увлечь школьника математикой [Текст]: материал для классных и внеклассных занятий / Б.А.Кордемский. - М: Просвещение, 1981. – 112с.

15. Кулько, В.Н. Формирование у учащихся умения учиться [Текст] / В.Н. Кулько, Г.Ц. Цехмистрова. – М: Просвещение, 1983.

16. Ленивенко, И.П. К проблемам организации внеклассной работы в 6-7 классах [Текст] // Математика в школе, 1993. - №4.

17. Макаренко, А.С. О воспитании в семье [Текст] / А.С.Макаренко. – М: Учпедгиз, 1955.

18. Метнльский, Н.В. Дидактика математики: общая методика и ее проблемы [Текст] / Н.В. Метельский. – Минск: Издательсто БГУ, 1982. – 308с.

19. Минский, Е.М. От игры к знаниям [Текст] / Е.М. Минский. – М: Просвещение, 1979.

20. Морозова, Н.Г. Учителю о познавательном интересе [Текст] / Н.Г. Морозова. – М: Просвещение, 1979. – 95с.

21. Пахутина, Г.М. Игра как форма организации обучения [текст] / Г.М. Пахутина. – Арзамас,2002.

22. Петрова, Е.С. Теория и методика обучения математике [Текст]: Учебно-методическое пособие для студентов математических специальностей / Е.С. Петрова. – Саратов: Издательство саратовского университета, 2004. – 84с.

23. Самойлик, Г. Развивающие игры [Текст] // Математика. Приложение к газете «Первое сентября», 2002. - №24.

24. Сиденко, А. Игровой подход в обучении [Текст] // Народное образование, 2000. - №8.

25. Степанов, В.Д. Активизация внеурочной работы по математике в средней школе [Текст]: книга для учителя / В.Д. Степанов. – М: Просвещение, 1991. – 80с.

26. Талызина, Н.Ф. Формирование познавательной деятельности учащихся [Текст] / Н.Ф. Талызина. – М: Знания, 1983. – 96с.

27. Технология игровой деятельности [Текст]: учебное пособие / Л.А. Байкова, Л.К. Теренкина, О.В. Еремкина. – Рязань: Издательство РГПУ, 1994. – 120с.

28. Факультативные занятия по математике в школе [Текст] / сост. М.Г. Лускина, В.И.Зубарева. - К: ВГГУ, 1995. – 38с

29. Формирование интереса к учению у школьников [Текст] / под ред. А.К. Маркова. - М: Просвещение, 1986. – 192с.

30. Шаталов, Г. Способы повышения мотивации обучения [Текст] // Математика. Приложение к газете «Первое сентября», 2003. - №23.

31. Шатилова, А. Занимательная математика. КВНы, викторины [Текст] / А. Шатилова, Л. Шмидтова. – М: Айрис-пресс, 2004.- 128с.

32. Шуба, М.Ю. Занимательные задания в обучении математике [Текст] / М.Ю. Шуба. – М: Просвещение, 1995.

33. Щукина, Г.И. Активизация познавательной деятельности учащихся в учебной деятельности [Текст] / Г.И. Щукина. - М: Просвещение, 1979. – 190с.

34. Щукина, Г.И. Педагогические проблемы формирования познавательного интереса учащихся [Текст] / Г.И. Щукина. - М: Просвещение, 1995. – 160с.

35. Эльконин Д.Б. психология игры [текст] / Д.Б. Эльконин. М: Педагогика, 1978.

Скачать бесплатную работу можно по короткой ссылке. Ознакомится с содержимым можно ниже.

ВВЕДЕНИЕ………………………………………………………………………………….3

Глава I. Теоретические аспекты формирования познавательного интереса младших школьника

Психолого – педагогическая характеристика

младшего школьного возраста……………………………………………………..6

1.2.Особенности познавательных интересов младших школьников……………………………………………………………………………………………..12

1.3. Взгляды отечественных исследователей

на проблему формирования познавательных интересов……………..15

1.4. Влияние игры на формирование познавательного интереса младших школьников………………………………………………………..21

Глава II. Экспериментальное исследование процесса влияние игры на формирование познавательного интереса……………………………….27

2.1. Выявление уровня сформированности познавательных интересов младших школьников

2.2. Результаты опытно-экспериментальной работы процесса формирование познавательного интереса………………………………………..

Заключение……………………………………………………………………………….

Список литературы……………………………………………………………………

Приложение………………………………………………………………………………

Актуальность темы. В последнее время в педагогике, так же как и во многих других областях науки, происходит перестройка практики и методов работы, в частности все более широкое распространение получают различного рода игры.

По мнению Л.С. Выготского, познавательный интерес - это «естественный двигатель детского поведения», он является «верным выражением инстинктивного стремления; указанием на то, что деятельность ребенка совпадает с его органическими потребностями». Вот почему оптимальным решением педагога будет построение «всей воспитательной системы на точно учтенных детских интересах…»

Также Н.Г. Морозова определяет познавательный интерес как мотив, описывая его как «важную личностную характеристику школьника и как интегральное познавательно-эмоциональное отношение школьника к учению». Автор считает, что интерес это отражение сложных процессов, происходящих в мотивационной сфере деятельности.

Мы считаем, что именно этот вид интереса (познавательный интерес) является чрезвычайно важным в организации учебной деятельности в младшем школьном возрасте. Познавательный интерес у младших школьников имеет довольно яркую эмоциональную окраску. Он проявляется в интересе к наблюдениям, описаниям, впечатлениям. Познавательный интерес в младшем школьном возрасте в значительной мере определяется таким новообразованием психики как стремление к взрослению и стремление к самостоятельности. Познавательный интерес в этом возрасте связан с желанием проникнуть в существующие закономерности учения и в основание знаний в целом.

В психологической литературе мы обнаружили схожие точки зрения ученых о природе возникновения познавательного интереса как такового. Большинство психологов как отечественных, так и зарубежных связывают интерес с потребностью и часто их сравнивают. Взаимосвязь между потребностями и познавательным интересом весьма сложна и не дает оснований ставить между ними знак равенства.

Так, С.Л. Рубинштейн отмечает, что интерес отражает потребность, но не сводится к ней. К развитию интереса можно также отнести и случаи перехода познавательного интереса в учебный интерес. В связи с этим, И.Ф. Харламов изучал специфику учебного интереса, отличающую его от других видов познавательного интереса. Исследуя и познавая мир, ребенок делает массу открытий, проявляя интерес к разным областям окружающей его действительности.

Согласно мнению Г.И. Щукиной, познавательный интерес - это особое избирательное, наполненное активным замыслом, сильными эмоциями, устремлениями отношение личности к окружающему миру, к его объектам, явлениям и процессам

Игра – для детей это воссоздание какой-либо реальности с целью научиться действовать в ней (примером может послужить любая детская игра), на игре построено воспитание ребенка и познание им окружающего мира. Такой подход, естественно, не способствует успешному усвоению программного материала и повышению уровня количество знаний. Наоборот, материал, плохо усвоенный учащимися, не может являться надежной опорой для усвоения новых знаний.

Советские психологи исходят из положения о единстве динамической и содержательной сторон мотивации. Как подчеркивал С. Л. Рубинштейн, выделение смысловой стороны мотивации «свидетельствует о научно обоснованной вере в человеческий разум, человеческое сознание, интеллект»

Решение этой проблемы кроется в использовании методов обучения младших школьников, базирующихся на передовых представлениях детской психологии. И здесь на помощь учителям должна прийти игра- один из древнейших, и, тем не менее, актуальных методов обучения.

В самых различных системах обучения игре отводится особое место. И определяется это тем, что игра очень созвучна природе ребенка. Для ребят дошкольного и младшего школьного возраста игра имеет исключительное значение: игра для них — учеба, игра для них – труд, игра для них – серьезная форма воспитания. Игра формирует учебную мотивацию школьников.

В настоящее время появилось целое направление в педагогической науки — игровая педагогика, которая считает игру ведущим методом воспитания и обучения детей дошкольного и младшего школьного возраста и поэтому упор на игру(игровую деятельность, игровые формы, приемы)- это важнейший путь включения детей в учебную работу, способ обеспечения эмоционального отклика на воспитательные воздействия и нормальных условии жизнедеятельности. В последние годы вопросы теории и практики дидактической игры разрабатывались и разрабатывают многими исследователями: А.П.Усовой, Е.И. Радиной, Ф.Н. Блехер, Б.И. Хачапуридзе, З.М. Багусловской, Е.Ф.Иваницкой, А.И.Сорокиной, Е.И.Удальцовой, В.Н.Аванесовой, Е.К.Бондаренко, Л.А. Венгером. Во всех исследованиях утвердилась взаимосвязь обучения и игры, определилась структура игрового процесса, основные формы и методы руководства дидактическими играми.

Цель исследования: выявить и обосновать условия, при кторых игровая деятельность становится эффективным средством формирования познавательного интереса у младших школьников.

Предмет исследования: игра как средство развития познавательного интереса младших школьников

Объект исследования: формирование познавательного интереса детей младшего школьного возраста.

Гипотеза исследования: мы предполагаем, что использование разнообразных игр с детьми младшего школьного возраста, с учётом современных методик, способствует:

— формированию познавательного интереса младших школьников;

— повышению уровня знаний младших школьников.

Задачи исследования:

1.Анализ литературы по данной проблеме и рассмотрение различных подходов к развитию познавательного интереса.

2.Разработка комплекса игр, способствующих развитию познавательного интереса младших школьников.

3.Провести опытно-экспериментальную проверку эффективности влияния игр на развитие познавательного интереса младших школьников.

Методологической и теоретической основой исследования являются подходы к проблеме развития способностей, разработанные в трудах Б.Г. Ананьева, Л.И. Божович, Г.И. Щукиной и др..

В ходе данной работы были использованы следующие методы исследования:

— анализ психолого-педагогической литературы;

— анкетирование,

Индивидуальная беседа с младшими школьниками,

— эксперимент.

База исследования: МОУ Сотниковская СОШ 3 а и 3 б

Итак, познавательный интерес — это один из важнейших для нас мотивов учения школьников. Его действие очень сильно. Под влиянием познавательного интереса учебная работа даже у слабых учеников протекает более продуктивно. Познавательный интерес при правильной педагогической организации деятельности учащихся и систематической и целенаправленной воспитательной деятельности может и должен стать устойчивой чертой личности школьника и оказывает сильное влияние на его развитие. Познавательный интерес выступает перед нами и как сильное средство обучения. Познавательный интерес выступает перед нами и как сильное средство обучения. Классическая педагогика прошлого утверждала – ” Смертельный грех учителя – быть скучным”. Когда ребенок занимается из-под палки, он доставляет учителю массу хлопот и огорчений, когда же дети занимаются с охотой, то дело идет совсем по-другому. Активизация познавательной деятельности ученика без развития его познавательного интереса не только трудна, но практически и невозможна. Вот почему в процессе обучения необходимо систематически возбуждать, развивать и укреплять познавательный интерес учащихся и как важный мотив учения, и как стойкую черту личности, и как мощное средство воспитывающего обучения, повышения его качества. Первое, что является предметом познавательного интереса для школьников – это новые знания о мире. Вот почему глубоко продуманный отбор содержания учебного материала, показ богатства, заключенного в научных знаниях, являются важнейшим звеном формирования интереса к учению.

Каковы же пути осуществления этой задачи? Прежде всего, интерес возбуждает и подкрепляет такой учебный материал, который является для учащихся новым, неизвестным, поражает их воображение, заставляет удивляться. Удивление — сильный стимул познания, его первичный элемент. Удивляясь, человек как бы стремится заглянуть вперед. Он находится в состоянии ожидания чего-то нового.

Далеко не все в учебном материале может быть для учащихся интересно. Тогда выступает еще один, не менее важный источник познавательного интереса – сам процесс деятельности. Что бы возбудить желание учиться, нужно развивать потребность ученика заниматься познавательной деятельностью, а это значит, что в самом процессе ее школьник должен находить привлекательные стороны, что бы сам процесс учения содержал в себе положительные заряды интереса. Путь к нему лежит прежде всего через разнообразную самостоятельную работу учащихся, организованную в соответствии с особенностью интереса.

Свои уроки я стараюсь проводить с учетом индивидуальных способностей и уровня подготовленности учащихся. При изучении новых тем создаю и предлагаю решить проблемные вопросы, применяю компьютерные технологии, на уроках использую электронные и другие наглядные пособия.

Люблю использовать разнообразные виды уроков, что позволяет развивать у детей любознательность, активность, расширять их кругозор, творческие способности.

Ребятам больше нравятся уроки – практические, уроки самостоятельной творческой деятельностью. Дети на таких уроках наиболее активны, показывают свои творческие способности.

На уроках я использую различные формы: беседы, ролевые игры, уроки. Это позволяет учащимся проявить себя, развивать у них любознательность, расширить кругозор, наблюдательность, активность, самостоятельность. При подготовке уроков использую дополнительную литературу, сообщения средств массовой информации, наглядные пособия, карточки, тесты, ИКТ

В своей работе использую разноуровневые задания. Применяю индивидуальный и дифференцированный подход при работе с сильными и слабыми учениками.

Готовясь к урокам, уделяю внимание всем компонентам урока: целям, задачам, содержанию, методам, формам и результатам обучения.

Пополняю свою копилку дидактическими и наглядными материалами, тестами, мультимедиа.

В ходе написания выпускной квалификационной работы были реализованы поставленные цели и задачи. Гипотеза дала положительный результат.

  1. Игра- это одна из форм обучения. Она должна включаться в учебный процесс по предметам в тесной связи с другими приемами учебной работы.
  2. Учителю нужно уметь организовать игру так, чтобы заинтересовать

детей учебным материалом.

Таким образом, использование дидактических игр приносит хорошие результаты, если игра полностью соответствует целям и задачам урока и в ней принимают активное участие все дети. Играя с увлечением, они лучше усваивают материал, не устают и не теряют интереса, выполняя однотипные упражнения, необходимые для формирования вычислительных навыков. В процессе игры у детей формируются обще- учебные умения и навыки, в частности, умения контроля и самоконтроля, формируются такие черты характера, как взаимопонимание, ответственность, честность.

Введение

Глава 1. Теоретические основы исследования игровых технологий как средства развития познавательных интересов младших школьников

1.1 Понятие «познавательный интерес» в психолого-педагогической литературе

1.2 Особенности развития познавательного интереса в младшем школьном возрасте

1.3 Игровые технологии как средство развития познавательных интересов детей младшего школьного возраста

Глава 2. Экспериментальное исследование игровых технологий как средства развития познавательных интересов младших школьников

2.1 Диагностика уровней сформированности познавательных интересов младших школьников

2.2 Организация работы по развитию познавательных интересов младших школьников через применение игровых технологий

2.3 Анализ реализованных мероприятий по развитию познавательных интересов младших школьников

Заключение

Библиография

Приложения

Введение

Игра как феноменальное человеческое явление наиболее подробно рассматривается в таких областях знания как психология и философия. В педагогике и методике преподавания больше внимания уделяется играм дошкольников (Н.А. Короткова, Н.Я. Михайленко, А.И. Сорокина, Н.Р. Эйгес и др.) и младших школьников (Ф.К. Блехер, А.С. Ибрагимова, Н.М. Конышева, М.Т. Салихова и др.). Это связано с тем, что педагоги рассматривают игру как важный метод обучения для детей именно дошкольного и младшего школьного возраста. Ряд специальных исследований по игровой деятельности дошкольников осуществили выдающиеся педагоги нашего времени (П.П. Блонский, Л.С. Выготский, С.Л. Рубинштейн, Д.Б. Эльконин и др.). Аспекты игровой деятельности в общеобразовательной школе рассматривались С.В. Арутюняном, О.С. Газманом, В.М. Григорьевым, О.А. Дьячковой, Ф.И. Фрадкиной, Г.П. Щедровицким и др.

В перестроечный период произошел резкий скачок интереса к обучающей игре (В.В. Петрусинский, П.И. Пидкасистый, Ж.С. Хайдаров, С.А. Шмаков, М.В. Кларин, А.С. Прутченков и др.). В современной школе возникает насущная потребность в расширении методического потенциала в целом, и в активных формах обучения в частности. К таким активным формам обучения, недостаточно освещенным в методике преподавания начальной школы, относятся игровые технологии.

Игровые технологии являются одной из уникальных форм обучения, которая позволяет сделать интересными и увлекательными не только работу учащихся на творческо-поисковом уровне, но и будничные шаги по изучению русского языка. Занимательность условного мира игры делает положительно эмоционально окрашенной монотонную деятельность по запоминанию, повторению, закреплению или усвоению информации, а эмоциональность игрового действа активизирует все психические процессы и функции ребенка. Другой положительной стороной игры является то, что она способствует использованию знаний в новой ситуации, т.о. усваиваемый учащимися материал проходит через своеобразную практику, вносит разнообразие и интерес в учебный процесс.

Все это и обусловило актуальность темы исследования .

При изучении психолого-педагогической литературы нами было выявлено противоречие между необходимостью развития познавательных интересов учащихся начальной школы и малым количеством разработок по игровым технологиям как средстве развития познавательных интересов детей младшего школьного возраста. Выявленное противоречие позволило обозначить проблему исследования : изучение возможностей игровых технологий в развитии познавательных интересов младших школьников.

Данная проблема позволила сформулировать тему исследования : «Игровые технологии как средство развития познавательных интересов младших школьников».

Объект исследования : процесс развития познавательных интересов младших школьников.

Предмет исследования : игровые технологии как средство развития познавательных интересов младших школьников.

Цель исследования : теоретически определить и экспериментально проверить возможность игровых технологий как средства развития познавательных интересов младших школьников.

Изучение психолого-педагогической литературы по теме исследования позволило выдвинуть следующую гипотезу: предполагается, что развитие познавательных интересов младших школьников будет проходить более успешно, если на уроках применять игровые технологии.

В соответствии с целью и гипотезой исследования были определены следующие задачи :

1. Проанализировать психолого-педагогическую литературу по проблеме исследования.

2. Рассмотреть понятие «познавательный интерес» и определить особенности развития познавательных интересов у детей младшего школьного возраста.

3. Выявить возможности игровых технологий как средства развития познавательных интересов младших школьников.

4. Экспериментальным путем проверить эффективность использования игровых технологий как средства развития познавательных интересов младших школьников.

Теоретико-методологическая основа исследования : методические и научные исследования развития познавательных интересов младших школьников в трудах С.В. Арутюняна, О.С. Газмана, В.М. Григорьева, О.А. Дьячковой, Ф.И. Фрадкиной, Г.П. Щедровицкого и других, концептуальные положения использования игровых технологий в развитии познавательных интересов младших школьников в психолого-педагогическом комплексе В.В. Петрусинского, П.И. Пидкасистого, Ж.С. Хайдарова, С.А. Шмакова, М.В. Кларина, А.С. Прутченкова и других.

Проблеме познавательных интересов, способам и методам активизации учебной деятельности были посвящены исследования Л.И. Божович, А.А. Вербицкого, Л.С. Выготского, П.И. Гальперина, В.В. Давыдова, В.С. Ильина, А.Н. Леонтьева, А.К. Марковой, А.М. Матюшкина, А.В. Петровского, Н.Ф. Талызиной, Г.А. Цукерман, Л.М Фридмана, Т.И. Шамовой, Г.М. Щукиной, Д.Б. Эльконина, И.С. Якиманской.

Для решения поставленных задач и проверки гипотезы были использованы следующие методы исследования : теоретический анализ и обобщение психолого-педагогической литературы по проблеме исследования, наблюдение за учебно-воспитательным процессом, педагогический эксперимент, метод анализа педагогического эксперимента, статистические методы обработки данных.

Опытно-экспериментальная база исследования : МОУ СОШ д.Ильиново Ялуторовского района Тюменской области. В эксперименте участвовали учащиеся 4 класса.

Исследование проводилось в три этапа.

Первый этап – постановочный (01.02.10 – 01.03.10) – выбор и осмысление темы. Изучение психолого-педагогической литературы, постановка проблемы, формулировка цели, предмета, объекта, задач исследования, постановка гипотезы.

Второй этап – собственно-исследовательский (02.03.10 – 02.04.10) – разработка комплекса мероприятий и их систематическое проведение, обработка полученных результатов, проверка гипотезы.

Третий этап – интерпретационно-оформительский (03.04.10 – 03.05.10) – проведение контрольного эксперимента, обработка и систематизация материала.

Научная новизна исследования: исследования состоит в том, что уточнен понятийно-терминологический аппарат, описывающий процесс развития познавательных интересов детей младшего школьного возраста через использование игровых технологий.

Практическая значимость заключается в том, что выводы и результаты курсовой работы могут быть использованы в учебно-воспитательном процессе общеобразовательных учреждений.

Структура и объем работы : работа состоит из введения, двух глав, заключения, библиографического списка, включающего 42 наименования, приложения (4). Работа включает таблицы (4).

Общий объем работы 54 страницы компьютерного текста.

Глава 1. Теоретические основы исследования игровых технологий как средства развития познавательных интересов младших школьников

1.1 Понятие «познавательный интерес» в психолого-педагогической литературе

Интерес, как сложное и очень значимое для человека образование, имеет множество трактовок в своих психологических определениях, он рассматривается как:

Избирательная направленность внимания человека (Н.Ф. Добрынин, Т. Рибо);

Проявление его умственной и эмоциональной активности (С.Л. Рубинштейн);

Активатор разнообразных чувств (Д. Фрейер);

Активное эмоционально-познавательное отношение человека к миру (Н.Г. Морозова);

Специфическое отношение личности к объекту, вызванное сознанием его жизненного значения и эмоциональной привлекательностью (А.Г. Ковалев) .

Важнейшая область общего феномена интереса - познавательный интерес. Его предметом является самое значительное свойство человека: познавать окружающий мир не только с целью биологической и социальной ориентировки в действительности, но в самом существенном отношении человека к миру - в стремлении проникать в его многообразие, отражать в сознании сущностные стороны, причинно-следственные связи, закономерности, противоречивость.

В то же время познавательный интерес, будучи включённым в познавательную деятельность, теснейшим образом сопряжён с формированием многообразных личностных отношений: избирательного отношения к той или иной области науки, познавательной деятельности, участию в них, общению с соучастниками познания. Именно на этой основе - познания предметного мира и отношения к нему, научным истинам - формируется миропонимание, мировоззрение, мироощущение, активному, пристрастному характеру которых способствует познавательный интерес.

Более того, познавательный интерес, активизируя все психические процессы человека, на высоком уровне своего развития побуждает личность к постоянному поиску преобразования действительности посредством деятельности (изменения, усложнения её целей, выделения в предметной среде актуальных и значительных сторон для их реализации, отыскания иных необходимых способов, привнесения в них творческого начала).

Особенностью познавательного интереса является его способность обогащать и активизировать процесс не только познавательной, но и любой деятельности человека, поскольку познавательное начало имеется в каждой их них. В труде человек, используя предметы, материалы, инструменты, способы, нуждается в познании их свойств, в изучении научных основ современного производства, в осмыслении рационализаторских процессов, в знании технологии того или иного производства. Любой вид человеческой деятельности содержит в себе познавательное начало, поисковые творческие процессы, способствующие преобразованию действительности. Любую деятельность человек, одухотворённый познавательным интересом, совершает с большим пристрастием, более эффективно.

Познавательный интерес - важнейшее образование личности, которое складывается в процессе жизнедеятельности человека, формируется в социальных условиях его существования и никоим образом не является имманентно присущим человеку от рождения.

Значение познавательного интереса в жизни конкретных личностей трудно переоценить. Интерес выступает как самый энергичный активатор, стимулятор деятельности, реальных предметных, учебных, творческих действий и жизнедеятельности в целом.

Особую значимость познавательной интерес имеет в дошкольные годы, когда знания становятся фундаментальной основой жизни.

Познавательный интерес - интегральное образование личности. Он как общий феномен интереса имеет сложнейшую структуру, которую составляют как отдельные психические процессы (интеллектуальные, эмоциональные, регулятивные), так и объективные и субъективные связи человека с миром, выраженные в отношениях.

В единстве объективного и субъективного в интересе проявляется диалектика формирования, развития и углубления интереса. Интерес формируется и развивается в деятельности, и влияние на него оказывают не отдельные компоненты деятельности, а вся её объективно-субъективная сущность (характер, процесс, результат). Интерес - это «сплав» многих психических процессов, образующих особый тонус деятельности, особые состояния личности (радость от процесса учения, стремление углубляться в познание интересующего предмета, в познавательную деятельность, переживание неудач и волевые устремления к их преодолению) .

Познавательный интерес выражен в своём развитии различными состояниями. Условно различают последовательные стадии его развития: любопытство, любознательность, познавательный интерес, теоретический интерес. И хотя эти стадии выделяются чисто условно, наиболее характерные их признаки являются общепризнанными.

Любопытство - элементарная стадия избирательного отношения, которая обусловлена чисто внешними, часто неожиданными обстоятельствами, привлекающими внимание человека. Для человека эта элементарная ориентировка, связанная с новизной ситуации, может и не иметь особой значимости. На стадии любопытства ребенок довольствуется лишь ориентировкой, связанной с занимательностью того или иного предмета, той или иной ситуации. Эта стадия ещё не обнаруживает подлинного стремления к познанию. И, тем не менее, занимательность как фактор выявления познавательного интереса может служить его начальным толчком.

Любознательность - ценное состояние личности. Она характеризуется стремлением человека проникнуть за пределы увиденного. На этой стадии интереса обнаруживаются достаточно сильные выражения эмоций удивления, радости познания, удовлетворённостью деятельностью. В возникновении загадок и их расшифровке и заключается сущность любознательности, как активного видения мира, которое развивается не только на занятиях, но и в труде, когда человек отрешён от простого исполнительства и пассивного запоминания. Любознательность, становясь устойчивой чертой характера, имеет значительную ценность в развитии личности. Любознательные люди не равнодушны к миру, они всегда находятся в поиске.

Познавательный интерес на пути своего развития обычно характеризуется познавательной активностью, явной избирательной направленностью учебных предметов, ценной мотивацией, в которой главное место занимают познавательные мотивы. Познавательный интерес содействует проникновению личности в существенные связи, отношения, закономерности познания. Эта стадия характеризуется поступательным движением познавательной деятельности дошкольника, поиском интересующей его информации. Любознательный дошкольник посвящает свободное время предмету познавательного интереса.

Теоретический интерес связан как со стремлением к познанию сложных теоретических вопросов и проблем конкретной науки, так и с использованием их как инструмента познания. Эта ступень активного воздействия человека на мир, на его переустройство, что непосредственно связано с мировоззрением человека, с его убеждениями в силе и возможностях науки. Эта ступень характеризует не только познавательное начало в структуре личности, но и человека как деятеля, субъекта, личность.

В реальном процессе все указанные ступени познавательного интереса представляют собой сложнейшие сочетания и взаимосвязи. В познавательном интересе обнаруживаются и рецидивы в связи со сменой предметной области, и сосуществование в едином акте познания, когда любопытство переходит в любознательность.

В условиях обучения познавательный интерес выражен расположенностью школьника к учению, к познавательной деятельности одного, а может быть, и ряда учебных предметов.

Как показывают психолого-педагогические исследования, интересы младших школьников характеризуются сильно выраженным эмоциональным отношением к тому, что особенно ярко, эффективно раскрыто в содержании знаний. Интерес к впечатляющим фактам, к описанию явлений природы, событий общественной жизни, истории, наблюдения с помощью учителя над словом рождают интерес к языковым формам. Всё это позволяет говорить о широте интересов младших школьников, в значительной мере зависимых от обстоятельств учения, от учителя. В то же время практические действия с растениями, животными во внеурочное время в ещё большей мере расширяют интересы, развивающие кругозор, побуждают всматриваться в причины явлений окружающего мира. Обогащение кругозора детей вносит в их познавательные интересы изменения.

В учебно-познавательной деятельности интересы младшего школьника не всегда локализованы, поскольку объём систематизированных знаний и опыт их приобретения невелики. Поэтому попытки педагога сформировать приёмы обобщения, а также поиск детьми обобщённых способов решения поставленных задач нередко бывают безуспешными, что сказывается на характере интереса школьников, который чаще обращён не столько к процессу учения, сколько к его практическим результатам (сделал, решил, сумел). Вот почему приближение цели деятельности к его результату составляет для дошкольника важную основу, укрепляющую интерес. Частые же переключения интереса могут неблагоприятно влиять не только на укрепление интереса к учению, но и на процесс формирования личности школьника. Лишь с приобретением опыта познавательной деятельности, умело направляемой педагогом, происходит постепенное овладение обобщёнными способами, позволяющими решать более сложные задачи учения, обогащающие интерес дошкольника.

Опираясь на огромный опыт прошлого, на специальные исследования и практику современного опыта, можно говорить об условиях, соблюдение которых способствует формированию, развитию и укреплению познавательного интереса младшего школьника:

1.Максимальная опора на активную мыслительную деятельность младшего школьника. Главной почвой для развития познавательных сил и возможностей младшего школьника, как и для развития подлинно познавательного интереса, являются ситуации решения познавательных задач, ситуации активного поиска, догадок, размышления, ситуации мыслительного напряжения, ситуации противоречивости суждений, столкновений различных позиций, в которых необходимо разобраться самому, принять решение, встать на определённую точку зрения.

2.Второе условие, обеспечивающее формирование познавательных интересов и личности в целом, состоит в том, чтобы вести учебный процесс на оптимальном уровне развития младшего школьника.

Исследования, проверяющие эффект дедуктивного пути в познавательном процессе (Л.С. Выготский, А.И. Янцов), также показали, что индуктивный путь, который считался классическим, не может полностью соответствовать оптимальному развитию младшего школьника . Путь обобщений, отыскание закономерностей, которым подчиняются видимые явления и процессы, - это путь, который в освещении множества запросов и разделов науки способствует более высокому уровню обучения и усвоения, так как опирается на максимальный уровень развития младшего школьника. Именно это условие и обеспечивает укрепление и углубление познавательного интереса на основе того, что обучение систематически и оптимально совершенствует деятельность познания, её способов, её умений.

Стойкий познавательный интерес формируется при сочетании эмоционального и рационального в обучении. Еще К.Д. Ушинский подчеркивал, как важно серьезное занятие сделать для детей занимательным. С этой целью педагоги насыщают свою деятельность приемами, пробуждающими непосредственный интерес учащегося. Они используют различный занимательный познавательный материал и сюжетно-ролевые игры, мини-викторины, задачи на сообразительность, ребусы, шарады, занимательные ситуации. Педагогическая наука в настоящее время располагает большими резервами, использование которых в практической деятельности помогает успешному решение целей обучения и воспитания школьников.

Анализ философской и психолого-педагогической литературы дает возможность охарактеризовать интерес как сложное психическое образование с присущими ему чертами: избирательной направленностью, органическим единством интеллектуальных, эмоциональных и волевых компонентов. Такая же сложная структура присуща и разновидности интереса - познавательному интересу.

Многолетние исследования И.Г. Морозовой, Г.И. Щукиной, Т.А. Куликовой доказали, что познавательный интерес не является имманентно присущим человеку от рождения, он складывается в процессе жизнедеятельности человека, формируется в социальных условиях его существования . При этом путь развития интереса в младшем школьном возрасте проходит несколько качественных этапов: от интереса к внешним качествам, свойствам предметов и явлений окружающего мира к проникновению в их сущность, к обнаружению связей и отношений, существующих между ними.

В своем исследовании мы рассматриваем познавательный интерес как эмоционально-познавательное отношение, возникающее из эмоционально-познавательного переживания, к предмету или непосредственно мотивированной деятельности, как отношение, переходящее при благоприятных условиях в эмоционально-познавательную направленность личности (Н.Г. Морозова).

Таким образом, “познавательный интерес в самом общем определении можно назвать избирательной деятельностью человека на познание предметов, явлений, событий окружающего мира, активизирующей психические процессы, деятельность человека, его познавательные возможности”.

Особенностью познавательного интереса является его способность обогащать и активизировать процесс не только познавательной, но и любой деятельности человека, поскольку познавательное начало имеется в каждой их них. Важной особенностью познавательного интереса является также и то, что центром его бывает такая познавательная задача, которая требует от человека активной, поисковой или творческой работы, а не элементарной ориентировки на новизну и неожиданность. Формирование и развитие познавательных интересов часть широкой проблемы воспитания всесторонне развитой личности. Поэтому необходимость формирования познавательных интересов в начальной школе имеет социальное, педагогическое и психологическое значение. В следующем параграфе мы рассмотрим особенности развития познавательного интереса детей младшего школьного возраста.

1.2 Особенности развития познавательного интереса в младшем школьном возрасте

Младший школьник находится в новых для него условиях - он включен в общественно значимую учебную деятельность, результаты которой высоко или низко оцениваются близкими взрослыми. От школьной успеваемости, оценки ребенка как хорошего или плохого ученика непосредственно зависит в этот период развитие его личности.

Яркие различия у младших школьников наблюдаются в области познавательных интересов. Глубокий интерес к изучению какого-либо учебного предмета в начальных классах встречается редко, обычно он сочетается с ранним развитием специальных способностей. Таких детей, считающихся одаренными, - единицы. Большинству младших школьников присущи познавательные интересы не слишком высокого уровня. Но хорошо успевающих детей привлекают разные, в том числе самые сложные учебные предметы. Они ситуативно, на разных уроках, при изучении разного учебного материала дают всплески интереса, подъемы интеллектуальной активности.

Многообразие взглядов на интерес уже в наше время отмечали многие, в том числе А.Г. Ковалев и Б.И. Додонов, посвятившие ему как психологическому феномену специальные главы в своих монографиях. Так, первый отмечает, что одни психологи сводят интерес к осознанной потребности, другие - к направленности внимания, большинство же склоняется к определению интереса как познавательного отношения личности к действительности. Б.И. Додонов, в свою очередь, замечает, что интерес предстает перед нами то в виде мимолетного состояния, то в виде свойства личности и его проявления в систематически повторяющихся переживаниях и деятельности. При этом он предполагает, что за «веером» противоположных мнений об интересе кроются не заблуждения исследователей, а «схватывание» каждым из них тех или иных отдельных его сторон и проявлений, частично совпадающих с явлениями других образований психики . Интересы выступают в качестве постоянного побудительного механизма познания.

Формирование познавательных интересов у младших школьников происходит в форме любопытства, любознательности с включением механизмов внимания (поэтому некоторые авторы, как уже говорилось, принимают внимание за интерес; но внимание - это только механизм проявления ситуативного интереса). Переход интереса с одной стадии своего развития на другую не означает исчезновения предыдущих. Они остаются и функционируют наравне с вновь появившимися формами.

К развитию интереса можно отнести и случаи преобразования познавательного интереса в учебный интерес. А.Я. Миленький изучил специфику учебного интереса, отличающую его от других видов познавательного интереса . Формирование познавательных интересов у школьников начинается с самого начала обучения в школе. Только после возникновения интереса к результатам своего учебного труда формируется у младших школьников интерес к содержанию учебной деятельности, потребность приобретать знания.

На этой основе и могут сформироваться у младшего школьника мотивы учения высокого общественного порядка, связанные с подлинно ответственным отношением к учебным занятиям. Учитель должен воспитывать именно такие мотивы учения, добиваться осознания детьми общественного значения учебного труда. И форсировать этот процесс не следует, пока для него не созданы соответствующие предпосылки.

Формирование познавательного интереса к содержанию учебной деятельности, приобретению знаний связано с переживанием школьника чувства удовлетворения от своих достижений.

В первые годы обучения все интересы младшего школьника развиваются очень заметно, особенно познавательный интерес, жадное стремление узнать больше, интеллектуальная любознательность. Сначала появляются интересы к отдельным фактам, изолированным явлениям (1-2 классы), затем интересы, связанные с раскрытием причин, закономерностей, связей и взаимозависимостей между явлениями. Если первоклассников и второклассников чаще интересует, «что это такое?», то в более старшем возрасте типичными становятся вопросы «почему?» и «как?». С развитием навыка чтения складывается интерес к чтению определенной литературы, у мальчиков быстро формируется интерес к технике. С 3 класса начинают дифференцироваться учебные интересы.

Познавательный интерес, как и творческая активность – сложные, многозначные явления, которые можно рассматривать с двух сторон. Во-первых, они выступают как средство обучения, как внешний стимул, с которым связана проблема занимательности. Во-вторых, данные понятия являются ценнейшим мотивом учебной деятельности школьника. Но для образования мотивов недостаточно внешних воздействий, они должны опираться на потребности самой личности. Поэтому можно выделить внутренние и внешние проявления познавательного интереса, а, следовательно, условия, влияющие на их формирование также могут делиться на внутренние и внешние.

Проблема развития познавательного интереса младших школьников не имеет однозначного решения, по причине ее многофакторности. М.Н. Скаткин утверждает, что на развитие познавательного интереса младших школьников влияет и содержание материала, и методы обучения, и организационные формы, и постановка воспитательной работы, и материальная база школы, и, наконец, личность учителя .

При формировании познавательного интереса младших школьников при выполнении разного рода заданий важно учитывать внутреннюю и внешнюю его стороны. Но так как учитель не может в полном объеме воздействовать на мотивы, потребности личности, то необходимо сосредоточить внимание на средствах обучения и, следовательно, учитывать внешние условия.

Предметом познавательного интереса младших школьников являются новые знания о мире. Поэтому глубоко продуманный, хорошо отобранный учебный материал, который будет новым, неизвестным, поражающим воображение учащихся, заставляющий их удивляться, а также обязательно содержащий новые достижения науки, научные поиски и открытия явится важнейшим звеном формирования интереса к учению.

Главное в системе работы по развитию познавательного интереса младших школьников: учебный процесс должен быть интенсивным и увлекательным, а стиль общения – мягким, доброжелательным. Необходимо надолго удержать в ребёнке чувство радости, интереса. Уроки математики с использованием презентации проходят интересно и не утомляют детей, доставляя им полезные упражнения для ума, развивая наблюдательность, уча самостоятельно делать выводы. Ребенок младшего школьного возраста - любознательная, думающая, наблюдающая, экспериментирующая личность.

Познавая мир, исследуя его, ребенок делает массу открытий и изобретений, проявляя интерес к разным областям окружающей действительности.

Среди характерных черт познавательного интереса младших школьников особую значимость для нас приобретает такая черта, как действенность, выражающаяся в активной деятельности ребенка, направленной на ознакомление с предметами и явлениями социальной действительности, в преодолении трудностей и проявлении волевых усилий для достижения цели.

Проблеме развития познавательного интереса у младших школьников посвящен целый ряд исследований (Р.Д. Тригер, К.М. Рамонова, Н.К. Постникова, И.Д. Власова, Л.Ф. Захаревич, Л.М. Маневцова, Т.А. Куликова, Е.В. Иванова, Е.С. Бабунова, Л.Н. Вахрушева и др.), рассматривающих его как мотив познавательной деятельности.

Познавательный интерес младших школьников обогащает процесс общения. Интенсивное протекание деятельности, увлеченность в обсуждении актуальных проблем, приобретение широкой информации друг от друга - все способствует и эффективности учения, и социальным связям младших школьников, воспитанию и укреплению коллективных устремлений. В психолого-педагогической литературе интересы младших школьников характеризуются как интересы с сильно выраженным эмоциональным отношением, что особенно ярко, эффектно раскрыто в содержании знаний. Интерес к впечатляющим фактам, к отношению явлений природы, событий обществ жизни (история), наблюдение с помощью воспитателя над словом, интерес к превращению языковых форм позволяют говорить о многосторонних интересах дошкольников. В то же время практические действия с растениями, живущими за пределами занятий расширяют сферу их интересов к окружающему миру и заставляют постепенно всматриваться в причины наблюдаемых явлений этому, конечно, способствуют телепередачи: "Клуб путешественников", "В мире животных" и другие, к которым уже приобщены старшие дошкольников .

В развитии познавательного интереса младших школьников можно выделить несколько этапов. Первоначально он проявляется в виде любопытства - естественной реакции человека на все неожиданное, интригующее. Любопытство, вызванное неожиданным результатом опыта, интересным фактом, приковывает внимание учащегося к материалу данного занятия, но не переносится на другие занятия. Это неустойчивый, ситуативный интерес.Более высокой стадией интереса является любознательность, когда учащийся проявляет желание глубже разобраться, понять изучаемое явление. В этом случае воспитанник обычно активен на занятии, задает вопросы, участвует в обсуждении результатов демонстраций, приводит свои примеры, читает дополнительную литературу, конструирует приборы, самостоятельно проводит опыты и т. д. Однако любознательность ученика обычно не распространяется на изучение всего предмета. Материал другой темы, раздела может оказаться для него скучным, и интерес к предмету пропадет. Поэтому задача состоит в том, чтобы поддерживать любознательность и стремиться сформировать у учащихся устойчивый интерес к предмету, при котором ученик понимает структуру, логику курса, используемые в нем методы поиска и доказательства новых знаний, в учебе его захватывает сам процесс постижения новых знаний, а самостоятельное решение проблем, нестандартных задач доставляет удовольствие. Таким образом, познавательный интерес младших школьников представляет собой важный фактор учения и в то же время является жизненно-необходимым фактором становления личности.

Познавательный интерес способствует общей направленности деятельности младших школьников и может играть значительную роль в структуре их личности. Влияние познавательного интереса на формирование личности обеспечивается рядом условий:

Уровнем развития интереса (его силой, глубиной, устойчивостью);

Характером (многосторонними, широкими интересами, локальными-стержневыми либо многосторонними интересами с выделением стержневого);

Местом познавательного интереса среди других мотивов и их взаимодействием;

Своеобразием интереса в познавательном процессе (теоретической направленностью или стремлением к использованию знаний прикладного характера);

Связью с жизненными планами и перспективами.

Указанные условия обеспечивают силу и глубину влияния познавательного интереса на личность младших школьников.

Развитие познавательных интересов прямо зависит от организации учебной работы. Поэтому учителю необходимо ориентироваться на закономерности развития познавательных интересов младших школьников, помнить, что развитие идет от простого к сложному, от известного к неизвестному, от близкого к далекому, от описания к объяснению. Для развития познавательных интересов важно соблюдать принцип: чем младше учащиеся, те нагляднее должно быть обучение и тем большую роль должно играть активное действование. Для младшего школьного возраста наиболее эффективным средством для развития познавательных интересов является использование игровых технологий, о возможностях которых пойдет речь в следующем параграфе.

1.3 Игровые технологии как средство развития познавательных интересов детей младшего школьного возраста

Игровые технологии являются составной частью педагогических технологий. Проблема применения игровых технологий в образовательном процессе в педагогической теории и практики не нова. Разработкой теории игры, ее методологических основ, выяснением ее социальной природы, значения для развития обучаемого в отечественной педагогике занимались Л. С. Выготский, А.Н. Леонтьев, Д.Б. Эльконин и др.

Слово «игра» не является научным понятием в строгом смысле этого слова. Может быть, именно потому, что целый ряд исследователей пытались найти нечто общее между самыми разнообразными и разнокачественными действиями, обозначаемыми словом «игра», мы не имеем до настоящего времени удовлетворительного разграничения этих деятельностей и удовлетворительного объяснения разных форм игры .

Начало разработки теории игры обычно связывается с именами таких мыслителей XIX в., как Ф. Шиллер, Г. Спенсер, В. Вундт. Разрабатывая свои философские, психологические и главным образом эстетические взгляды, они попутно, только в нескольких положениях, касались и игры как одного из самых распространенных явлений жизни, связывая происхождение игры с происхождением искусства. В отечественной педагогической литературе встречаются различные взгляды и подходы к сущности дидактических возможностей игр. Некоторые ученные, например, Л.С. Шубина, Л.И. Крюкова и другие, относят их к методам обучения. В.П. Бедерканова, Н.Н. Богомолова характеризуют игры как средство обучения. Игровую деятельность как проблему разрабатывали К.Д. Ушинский, П.П. Блонский, С.Л. Рубинштейн.

По мнению Д.Н. Узнадзе игра является формой психогенного поведения, т.е. внутренне присущего, имманентного личности. Игру как пространство «внутренней социализации» ребенка и средство усвоения социальных установок представлял себе Л.С Выготский .

Довольно интересно это понятие охарактеризовал А.Н. Леонтьев, а именно как свободу личности в воображении, «иллюзорная реализация нереализуемых интересов». На наш взгляд, наиболее полное определение представлено у В.С. Кукушина. Он считает, что игра – это вид деятельности в условиях ситуаций, направленных на воссоздание и усвоение общественного опыта, в котором складываются и совершенствуется самоуправление поведением .

Наиболее глубоко технология игры как формы организации и совершенствования учебного процесса рассмотрена С.Ф. Занько, Ю.С. Тюнниковым и С.М. Тюнниковой, которые полают, что « до развития теории проблемного обучения, ее основных понятий, принципов, методов игра не могла получить, и не имела педагогической логики построения ни в аспекте дидактической интерпретации структуры и содержания проблем, ни в аспекте организации осуществления процесса игры» .

Иначе игру представляет Б.П. Никитин, а именно как набор задач, которые ребенок решает с помощью кубиков, кирпичиков, квадратов из картона, пластика. Технология развивающих игр Б.П. Никитина интересна тем, что программа игровой деятельности состоит из набора развивающих игр, которые при всем своем многообразии исходят из общей идеи и обладают характерными особенностями .

Наиболее точно и широко игровой метод обучения описал А.А. Вербицкий, он наиболее точно определил принципы деловой игры, он совершенно прав, говоря, что ДИ позволяет студентам приобретать опыт познавательной и профессиональной деятельности, составил структуру или игровую модель, выявил особенность деловой игры. Большой вклад в развитие деловых игр внес Ю.Н.Кулюткин, описавший основные этапы проведения игры .

Чуть позже возникло такое понятие как игровая технология или что означает в нашем понимании процесс реализации игры.

В структуру игровой технологии как деятельности ограничено входят целеполагание, планирование, реализации цели, а также анализ результатов, в которых личность полностью реализует себя как субъект. В структуру игровой технологии как процесса входят:

а) роли, взятые на себя играющими;

б) игровые действия как средство реализации этих ролей;

в) игровое употребление предметов, т.е. замещение реальных вещей игровыми, условными;

г) реальные отношения между играющими;

Значение игровой технологии невозможно исчерпать и оценить развлекательно- рекреативными возможностями. В том и состоит ее феномен, что являясь развлечением, отдыхом, она способна перерасти в обучение, в творчество, в терапию, в модель типа человеческих отношений и проявлений в труде, воспитании. В современной школе, делающей ставку на активизацию и интенсификацию учебного процесса, игровая технология используется в следующих случаях:

В качестве самостоятельных технологий для освоения понятия, темы и даже раздела учебного предмета;

Как элементы (иногда весьма существенные) более обширной технологии;

В качестве технологии занятия или его фрагмента(введения, объяснения, закрепления, упражнения, контроля);

Как технология внеклассной работы (игры типа «Зарница» и т.д.) .

Понятие «игровые технологии» включает достаточно обширную группу приемов организации педагогического процесса в форме различных дидактических игр.

Деятельность учащихся должна быть построена на творческом использовании игры и игровых действий в учебно-воспитательном процессе с младшими школьниками, наиболее удовлетворяющей возрастные потребности данной категории учеников.

Исходя из значимости игровых технологий для развития познавательных интересов, а также последовательности и системности включении игры и игровых приемов в творческую познавательную деятельность, нами выделены общие условия применения игры в процессе обучения младших школьников: а) необходимость оценивания каждодневного применения игры по двойному критерию; по ближайшему эффекту и в соответствии с перспективой развития познавательных интересов; б) понимание игры как формы организации коллективной, руководимой учителем, учебной деятельности; в) необходимость обеспечения непосредственного обучающего эффекта игры, то есть, познавательную направленность, нацеленную на овладение способами учебных действий; г) создание положительного эмоционального настроя, способствующего вызвать у ребенка состояние творческого поиска и инициативы в процессе игры .

Игровая форма занятий создаётся на уроках при помощи игровых приёмов и ситуаций, которые выступают как средство побуждения, стимулирования учащихся к учебной деятельности.

Реализация игровых приёмов и ситуаций при урочной форме занятий происходит по таким основным направлениям: дидактическая цель ставится перед учащимися в форме игровой задачи; учебная деятельность подчиняется правилам игры; учебный материал используется в качестве её средства, в учебную деятельность вводится элемент соревнования, который переводит дидактическую задачу в игровую; успешное выполнение дидактического задания связывается с игровым результатом.

При использовании игровых технологий на уроках необходимо соблюдение следующих условий:

1) соответствие игры учебно-воспитательным целям урока;

2) доступность для учащихся данного возраста;

3) умеренность в использовании игр на уроках.

Можно выделить такие виды уроков с использованием игровых технологий:

1) ролевые игры на уроке;

2) игровая организация учебного процесса с использованием игровых заданий (урок - соревнование, урок - конкурс, урок - путешествие, урок - КВН);

3) игровая организация учебного процесса с использованием заданий, которые обычно предлагаются на традиционном уроке (найди орфограмму, произведи один из видов разбора и т.д.);

4) использование игры на определённом этапе урока (начало, середина, конец; знакомство с новым материалом, закрепление знаний, умений, навыков, повторение и систематизация изученного);

5) различные виды внеклассной работы по русскому языку (лингвистический КВН, экскурсии, вечера, олимпиады и т.п.), которые могут проводиться между учащимися разных классов одной параллели.

Игровые технологии занимают важное место в учебно-воспитательном процессе, так как не только способствуют воспитанию познавательных интересов и активизации деятельности учащихся, но и выполняют ряд других функций:

1)правильно организованная с учётом специфики материала игра тренирует память, помогает учащимся выработать речевые умения и навыки;

2) игра стимулирует умственную деятельность учащихся, развивает внимание и познавательный интерес к предмету;

3) игра - один из приёмов преодоления пассивности учеников.

Таким образом, рассмотрев теоретические основы использования игровых технологий как средство развития познавательных интересов младших школьников, мы пришли к выводами:

1. Познавательные интересы – это активная познавательная направленность, связанная с положительным эмоционально окрашенным отношением к изучению предмета с радостью познания, преодолению трудностей, созданием успеха, с самовыражением и утверждением развивающейся личности.

2. В младшем школьном возрасте развитие познавательных интересов имеет свои особенности. Познавательный интерес как мотив учения побуждает ученика к самостоятельной деятельности, при наличии интереса процесс овладения знаниями становится более активным, творческим, что в свою очередь, влияет на укрепление интереса. Развитие познавательных интересов младших школьников должно происходить в доступной для них форме, то есть через применение игр, использование игровых технологий.

3. Занятия, пронизанные элементами игры, соревнования, содержащие игровые ситуации значительно способствуют развитию познавательных интересов младших школьников. Во время игры ученик – полноправный участник познавательной деятельности, он самостоятельно ставит перед собой задачи и решает их. Для него игра – это не беззаботное и легкое времяпрепровождение: играющий отдает ей максимум энергии, ума, выдержки, самостоятельности. Познание окружающего мира в игре облекается в формы, непохожие на обычное обучение: здесь и фантазия, и самостоятельный поиск ответов, и новый взгляд на известные факты и явления, пополнение и расширение знаний и умений, установление связей, сходства и различия между отдельными событиями. Но самое важное – не по необходимости, не под давлением, а по желанию самих учащихся во время игр происходит многократное повторение материала в его различных сочетаниях и формах.

В следующей главе мы рассмотрим экспериментальное исследование развития познавательных интересов младших школьников с использованием игровых технологий.

Глава 2. Экспериментальное исследование игровых технологий как средства развития познавательных интересов младших школьников

2.1 Диагностика уровней сформированности познавательных интересов младших школьников

Для изучения возможностей игровых технологий как средства развития познавательных интересов детей младшего школьного возрастана базе МОУ СОШ д.Ильиново Ялуторовского района Тюменской области был проведен эксперимент.

В эксперименте приняли участие учащиеся 4 класса в количестве 20 человек. Они были поделены на две группы: экспериментальную и контрольную (по 10 человек в каждой). Список детей, участвующих в исследовании приведен в приложении 1.

Эксперимент состоял из трех этапов:

1 этап – констатирующий.

На этом этапе была проведена первичная диагностика уровня сформированности познавательных интересов детей младшего школьного возраста в экспериментальной и контрольной группах.

2 этап - формирующий.

На этом этапе проводились занятия, направленные на развитие познавательных интересов детей младшего школьного возраста. С контрольной группой на формирующем этапе эксперимента проводились занятия, предусмотренные учебным планом. Дети, составлявшие данную группу, не включались в формирующий эксперимент.

3 этап – контрольный.

На этом этапе была осуществлена повторная диагностика уровня сформированности познавательных интересов детей младшего школьного возраста в экспериментальной и контрольной группах, проведен анализ полученных результатов.

Для выявления уровня сформированности познавательных интересов младших школьников мы выделили следующие критерии и показатели:

Когнитивный (наличие познавательных вопросов, эмоциональная вовлеченность ребенка в деятельность);

Мотивационный (создание ситуаций успеха и радости, целенаправленность деятельности, ее завершенность);

Эмоционально-волевой (проявление положительных эмоций в процессе деятельности; длительность и устойчивость интереса к решению познавательных задач);

Действенно-практический (инициативность в познании; проявление уровней познавательной деятельности и настойчивости, степень инициативности ребенка).

На основе выделенных критериев, а также для аналитической обработки результатов исследования и получения количественных показателей были выделены три уровня сформированности познавательных интересов у младших школьников: низкий, средний и высокий.

Низкий уровень – не проявляют инициативности и самостоятельности в процессе выполнения заданий, утрачивают к ним интерес при затруднениях и проявляли отрицательные эмоции (огорчение, раздражение), не задают познавательных вопросов; нуждаются в поэтапном объяснении условий выполнения задания, показе способа использования той или иной готовой модели, в помощи взрослого.

Средний уровень – большая степень самостоятельности в принятии задачи и поиске способа ее выполнения. Испытывая трудности в решении задачи, дети не утрачивают эмоционального отношения к ним, а обращаются за помощью к воспитателю, задают вопросы для уточнения условий ее выполнения и получив подсказку, выполняют задание до конца, что свидетельствует об интересе ребенка к данной деятельности и о желании искать способы решения задачи, но совместно со взрослым.

Высокий уровень – проявление инициативности, самостоятельности, интереса и желания решать познавательные задачи. В случае затруднений дети не отвлекаются, проявляли упорство и настойчивость в достижении результата, которое приносит им удовлетворение, радость и гордость за достижения.

Для выявления уровня сформированности познавательных интересов мы использовали метод наблюдения, индивидуальные беседы с учащимися, с учителями работающими в данном классе, изучением детей в процессе совместной подготовки и проведения коллективного творческого дела. Результаты констатирующего этапа представлены в приложении 2. В процессе наблюдения мы отмечали наличие следующих проявлений у младших школьников:

1. Отличается прилежанием к учению.

2. Проявляет интерес к предмету.

3. На уроках эмоционально активен.

4. Задает вопросы, стремиться на них ответить.

5. Интерес направлен на объект изучения.

6. Проявляет любознательность.

7. Самостоятельно выполняет задание учителя.

8. Проявляет устойчивость волевых устремлений

В ходе наблюдения получены следующие данные:

На низком (репродуктивно-подражательном ) уровне развития познавательных интересов находилось 38% детей. Данная подгруппа получила условное название «Подражатели». Дети этой подгруппы не проявляли инициативности и самостоятельности в процессе выполнения заданий, утрачивали к ним интерес при затруднениях и проявляли отрицательные эмоции (огорчение, раздражение), не задавали познавательных вопросов; нуждались в поэтапном объяснении условий выполнения задания, показе способа использования той или иной готовой модели, в помощи взрослого. На среднем (поисково-исполнительском ) уровне познавательных интересов оказалось 58% детей. Эта группа детей, получившая название «Вопрошайки», характеризовалась большей степенью самостоятельности в принятии задачи и поиске способа ее выполнения. Испытывая трудности в решении задачи, дети не утрачивали эмоционального отношения к ним, а обращались за помощью к воспитателю, задавали вопросы для уточнения условий ее выполнения и получив подсказку, выполняли задание до конца, что свидетельствует об интересе ребенка к данной деятельности и о желании искать способы решения задачи, но совместно со взрослым. Наименьшее количество детей (4 %) находились на высоком (поисково-продуктивном ) уровне познавательных интересов. Данная подгруппа детей, условно названная «Искатели», отличалась проявлением инициативности, самостоятельности, интереса и желания решать познавательные задачи. В случае затруднений дети не отвлекались, проявляли упорство и настойчивость в достижении результата, которое приносило им удовлетворение, радость и гордость за достижения.

Результаты диагностики представлены в таблице 1.


Таблица 1. Показатели уровня сформированности познавательных интересов на констатирующем этапе эксперимента

Группа
Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
Экспериментальная группа 5 14 1 4 15 1 4 14 2 3 16 1
Контрольная группа 1 16 3 - 13 7 1 14 5 2 15 3

В процентном отношении результаты диагностики по группам можно представить в виде таблицы 2.

Таблица 2. Результаты констатирующего этапа

Критерии и показатели Констатирующий этап
Когнитивный (наличие познавательных вопросов, эмоциональная вовлеченность ребенка в деятельность) Низкий уровень Средний уровень Высокий уровень
КГ 30% 65% 5%
ЭК 25% 65% 10%
мотивационный (создание ситуаций успеха и радости, целенаправленность деятельности, ее завершенность) Низкий уровень Средний уровень Высокий уровень
КГ 49% 31% 20%
ЭК 44% 33% 23%
эмоционально-волевой (проявление положительных эмоций в процессе деятельности; длительность и устойчивость интереса к решению познавательных задач) Низкий уровень Средний уровень Высокий уровень
КГ 65% 33% 2%
ЭК 69% 31% -
действенно-практический (инициативность в познании; проявление уровней познавательной деятельности и настойчивости, степень инициативности ребенка) Низкий уровень Средний уровень Высокий уровень
КГ 32% 58% 10%
ЭК 25% 53% 22%

В результате проведенной работы на констатирующем этапе эксперимента было установлено, что 30% всех испытуемых имеют низкий уровень сформированности познавательных интересов, исходя из четырех критериев, определенных в начале эксперимента. Эти дети не проявляют инициативности и самостоятельности в процессе выполнения заданий, утрачивают к ним интерес при затруднениях и проявляли отрицательные эмоции (огорчение, раздражение), не задают познавательных вопросов; нуждаются в поэтапном объяснении условий выполнения задания, показе способа использования той или иной готовой модели, в помощи взрослого.

57 % испытуемых показали средний уровень. Эти дети, испытывая трудности в решении задачи, дети не утрачивают эмоционального отношения к ним, а обращаются за помощью к воспитателю, задают вопросы для уточнения условий ее выполнения и получив подсказку, выполняют задание до конца, что свидетельствует об интересе ребенка к данной деятельности и о желании искать способы решения задачи, но совместно со взрослым.

Лишь 13% детей имеют высокий уровень сформированности познавательных интересов. В случае затруднений дети не отвлекаются, проявляли упорство и настойчивость в достижении результата, которое приносит им удовлетворение, радость и гордость за достижения.

Полученные результаты позволяют сделать вывод, что у большинства испытуемых низкий и средний уровень познавательных интересов, что говорит о необходимости их развития. С этой целью нами был проведен формирующий этап эксперимента, о чем и пойдет речь в следующем параграфе.

2.2 Организация работы по развитию познавательных интересов младших школьников через применение игровых технологий

С детьми экспериментальной группы мы начали проводить занятия, направленные на развитие познавательных интересов через использование игровых технологий на уроках русского языка. Одним из наиболее действенных средств, способных вызвать интерес к занятиям по русскому языку, является игра. Цель игры пробудить интерес к познанию, науке, книге, учению. В младшем школьном возрасте игра наряду с учением занимает важное место в развитии ребенка. При включении детей в ситуацию игры интерес к учебной деятельности резко возрастает, изучаемый материал становится для них более доступным, работоспособность значительно повышается.

Поэтому для проведения эксперимента мы провели комплекс занятий с использованием игровых технологий. Помимо проведения уроков в игровой форме (см.Приложение 3), мы также на других уроках применяли различные игровые ситуации и упражнения.

Рассмотрим некоторые из игр на уроках русского языка на формирующем этапе эксперимента.

I. «Выбери три слова» (Игру можно использовать на закрепление любых тем по русскому языку)

Цель: Проследить за формированием орфографического навыка с учетом этапа работы над орфографией.

Подбор слов зависит от изучаемых или пройденных тем.

На 9 карточках записаны девять слов:

1-й набор: рыбка, вьюга, чулок, дубки, варенье, чучело, ручьи, чум, гриб.

2-й набор: подъезд, склад, ворона, град, съемка, клад, ворота, подъем, воробей.

Двое берут по очереди карточки, выигрывает тот, у кого первого окажутся три слова, имеющую одинаковую орфограмму.

II . Игра « Почтальон»

Цель: Закрепить знания учащихся по подбору проверочного слова, расширить словарный запас, развивать фонематический слух, профилактика дисграфии.

Ход: Почтальон раздает группе детей (по 4-5 чел.) приглашения.

Дети определяют, куда их пригласили.

Задания:

1. Объяснить орфограммы, подбирая проверочные слова.

2. Составить предложения, используя данные слова.

III . Игра « Шифровальщики»

Цель: автоматизация звуков, развитие фонетико-фонематического восприятия, процессов анализа и синтеза, понимание смысло-различительной функции звука и буквы, обогащение словарного запаса учащихся, развитие логического мышления.

Ход: Играют в парах: один в роли шифровальщика, другой - отгадчика.

Шифровальщик задумывает слово и шифрует его. Играющие могут попробовать свои силы в расшифровке словосочетаний и предложений.

Отгадчику предстоит не только отгадать слова, но и выбрать из каждой группы лишнее слово.

Например:

1. Аалтрек, лажок, раукжк, зоонкв (тарелка, ложка, кружка, звонок)

2. Оарз, страа, енкл, роамкша (роза, астра, клен, ромашка)

3. Плнаеат, здзеав, отрбиа, сген (планета, звезда, орбита, снег)

IV. Игра « Клички»

Цель: формирование процесса словоизменения и словообразования, закрепление фонетического и грамматического разбора слов, правописание собственных имен.

Ход: Образуйте клички животных от следующих слов:

ШАР, СТРЕЛА, ОРЕЛ, РЫЖИЙ, ЗВЕЗДА

Составить предложения.

ШАРИК, СТРЕЛКА, ОРЛИК, РЫЖИК, ЗВЕЗДОЧКА

Выделить ту часть слова, которой вы воспользовались при составлении кличек (суффикс, окончание).

Игровые приемы.

1. Найди «лишнее слово»

Цель: развивать умение выделять в словах общий признак, развитие внимания, закрепление правописаний непроверяемых гласных.

МАК РОМАШКА РОЗА ЛУК
КОШКА СОБАКА ВОРОБЕЙ КОРОВА
БЕРЕЗА ДУБ МАЛИНА ОСИНА
КОРОВА ЛИСА ВОЛК МЕДВЕДЬ

Задания: Подчеркни « лишнее» слово. Какие орфограммы встретились в этих словах?

2. Детям очень нравятся такие задания, как:

· Заменить словосочетания одним словом:

o - промежуток времени в 60 минут,

o - военнослужащий, стоящий на посту,

o - ребенок, любящий сладкое,

o - очень смешной фильм.

· Распредели слова на две группы.

o Найди родственные слова. Выдели корень.

· Закончи предложения:

У Ромы и Жоры есть …………. Однажды они пошли …………. Вдруг из кустов…………….. Потом ребята долго вспоминали как……..

· Составь рассказ по опорным словам:

o зима, снежок, морозец, деревья, холод, снегири.

Ценность таких игр заключается в том, что на их материале можно отрабатывать также скорость чтения, слоговой состав слова, развивать орфографическую зоркость и многое другое.

Важная роль занимательных игровых упражнений на уроках состоит еще и в том, что они способствуют снятию напряжения и страха при письме у детей, чувствующих свою собственную несостоятельность, создает положительный эмоциональный настой в ходе урока.

Ребенок с удовольствием выполняет любые задания и упражнения учителя. И учитель, таким образом, стимулирует правильную речь ученика как устную, так и письменную. Игра помогает формированию фонематического восприятия слова, обогащает ребенка новыми сведениями, активирует мыслительную деятельность, внимание, а главное- стимулирует речь. В результате чего у детей появляется интерес к русскому языку. Не говоря уже о том, что игры по русскому языку способствуют формированию орфографической зоркости младшего школьника.

Интерес к познавательной деятельности предполагает участие в ней ученика как субъекта, а это возможно лишь в том случае, когда у детей сформировано одно из ведущих качеств личности – познавательная активность. Эта черта личности проявляется в направленности и устойчивости познавательных процессов, стремлении к эффективному овладению знаниями и способами деятельности, в мобилизации волевых усилий на достижение учебно-познавательной цели. Важным фактором активизации учебно-познавательной деятельности является поощрение. Поэтому мы старались поощрять детей во время выполнения заданий.

Таким образом, в результате успешного применения поощрений развивается интерес к познавательной деятельности; постепенно увеличивается объем работы на уроке как следствие повышения внимания и хорошей работоспособности; усиливается стремление к творчеству, дети ждут новых заданий, сами проявляют инициативу в их поиске. Улучшается и общий психологических климат в классе: дети не бояться ошибок, помогают друг другу.

Можно описать некоторые изменения, происходящие в поведении детей за время проведения формирующих занятий. В начале дети не проявляли особого интереса к предлагаемому материалу и поиску различных способов обращения с ним. Предлагаемые детьми варианты были достаточно однообразны и не многочисленны. В середине формирующего эксперимента заинтересованность детей в предлагаемом им материале значительно возросла, они стремились найти разнообразные способы использования предлагаемого им материала, хотя это им не всегда удавалось. У детей появились попытки расширить предлагаемую им ситуацию. В конце формирующих занятий поведение детей существенно изменилось. Они стремились найти различные способы использования предлагаемого им материала и часто находили очень интересные.

Для того, чтобы определить, насколько эффективными были наши занятия с использованием игровых технологий, мы провели контрольного исследование, о котором пойдет речь в следующем параграфе.

2.3 Анализ реализованных мероприятий по развитию познавательных интересов младших школьников

После проведения формирующего эксперимента было проведено контрольное обследование детей экспериментальной и контрольной групп. Полученные данные показали, что уровень показателей познавательных интересов у детей экспериментальной и контрольной групп после проведения формирующих занятий стал различным. Уровень развития показателей у детей экспериментальной группы стал значительно выше, чем у детей контрольной группы, с которыми не проводилось специальных занятий.

Сравнение результатов уровня развития познавательных интересов в отношении когнитивного критерия (познавательных вопросов, эмоциональная вовлеченность ребенка в деятельность) познавательных интересов внутри каждой группы детей, до проведения формирующего эксперимента и после проведения формирующего эксперимента, позволяет сделать следующие выводы. В контрольной группе, где проводились традиционные занятия не произошло значительных изменений в уровне развития познавательных интересов: количество детей с низким с 30% детей (6 чел.) до 29% детей (3 чел.), количество детей со средним уровнем увеличилось с 66% детей (13 чел.) до 80% детей (12 чел.), количество детей с высоким уровнем развития содержательного показателя познавательных интересов осталось неизменным – 10% детей (2 чел.).

В экспериментальной группе, проводились занятия с использованием игровых технологий произошли существенные изменения в уровне развития когнитивной сферы познавательной активности. Низкий уровень развития познавательных интересов с 25% детей (5 чел.) уменьшился до 1 чел. детей (5%), средний уровень уменьшился с 65% детей (13 чел.) до 35% детей (7 чел.), в то же время высокий уровень развития познавательных интересов вырос с 10% детей (2 чел.) до 60% детей (12 чел.).

Сравнение результатов уровня развития мотивационной сферы познавательных интересов, до проведения формирующего эксперимента и после проведения формирующего эксперимента, позволяет сделать следующие выводы. В контрольной группе не произошло значительных изменений в уровне развития познавательных интересов: количество детей с низким с 49% детей (6 чел.) до 39% детей (3 чел.), количество детей со средним уровнем увеличилось с 31% детей (13 чел.) до 41% детей (12 чел.), количество детей с высоким уровнем развития содержательного показателя познавательных интересов осталось неизменным – 20% детей (2 чел.).

В экспериментальной группе произошли существенные изменения в уровне развития мотивационной сферы познавательных интересов. Низкий уровень развития познавательной активности с 44% детей (5 чел.) уменьшился до 1 чел. детей (7%), средний уровень с 33% детей (13 чел.) до 57% детей (7 чел.), в то же время высокий уровень развития познавательных интересов вырос с 23% детей (2 чел.) до 36% детей (12 чел.).

Сравнение результатов уровня развития познавательных интересов в отношении эмоционально-волевой сферы познавательной активности внутри каждой группы детей, до проведения формирующего эксперимента и после проведения формирующего эксперимента, позволяет сделать следующие выводы. В контрольной группе не произошло значительных изменений в уровне развития познавательных интересов: количество детей с низким с 65% детей (6 чел.) до 22% детей (3 чел.), количество детей со средним уровнем увеличилось с 33% детей (13 чел.) до 68% детей (12 чел.), количество детей с высоким уровнем развития эмоционально-волевой сферы познавательных интересов стало 10%.

В экспериментальной группе произошли следующие изменения в уровне развития эмоционально-волевой сферы познавательных интересов. Низкий уровень развития познавательных интересов с 69% детей (5 чел.) уменьшился до 1 чел. детей (15%), средний уровень изменился с 31% детей (13 чел.) до 45% детей (7 чел.), в то же время высокий уровень развития познавательных интересов вырос до 40%.

Сравнение результатов уровня развития познавательных интересов в отношении действенно-практической сферы познавательной активности до проведения формирующего эксперимента и после проведения формирующего эксперимента, позволяет сделать следующие выводы. В контрольной группе значительных изменений в уровне развития действенно-практической сферы познавательных интересов: количество детей с низким с 32% детей (6 чел.) до 40% детей (3 чел.), количество детей со средним уровнем изменилось с 58% детей (13 чел.) до 50% детей (12 чел.), количество детей с высоким уровнем развития содержательного показателя познавательных интересов осталось неизменным – 10% детей (2 чел.).

В экспериментальной группе произошли изменения в уровне развития действенно-практической сферы познавательных интересов. Низкий уровень развития познавательных интересов с 25% детей (5 чел.) уменьшился до 1 чел. детей (6%), средний уровень уменьшился с 53% детей (13 чел.) до 34% детей (7 чел.), в то же время высокий уровень вырос с 22% детей (2 чел.) до 70% детей (12 чел.).

Наряду с этим можно отметить и некоторые психологические особенности познавательных интересов, появившиеся у детей экспериментальной группы после проведения формирующего эксперимента. Практически у всех детей явно выросла инициативность в поиске новых способов обращения с предлагаемым объектом. У детей появился момент «обдумывания» - когда ребенок, в определенный момент, исчерпав свои возможности, не уходит из ситуации, не начинает повторять уже сделанные ранее варианты, а берет «таймаут», внимательно рассматривает кубики и пытается найти новое решение. Если случайно, в процессе манипулирования с кубиками, получался какой-то вариант, которого ребенок еще не делал, он обычно был им замечен.

Полученные нами данные позволяют сделать следующее выводы.

После проведения формирующего эксперимента уровень развития познавательных интересов детей экспериментальной и контрольной групп стал значительно отличаться. У детей экспериментальной группы уровень познавательных интересов значительно вырос, в то время, как у детей контрольной группы остались без изменений.

Построение занятий с применением игровых технологий с целью поддержания познавательной инициативы ребенка, ведет к развитию его познавательных интересов.

Наиболее адекватными для развития всех компонентов познавательных интересов являются занятия с ситуациями, в которых взрослый показывает ребенку различные способы обращения с материалом и стимулирует его к поиску новых возможностей действия.

К концу эксперимента эмоциональная вовлеченность и инициативность испытуемых выросла в полтора раза, а целенаправленность – более чем в 2 раза.

Результаты показали, что во время контрольного эксперимента дети проявили больше эмоциональной вовлеченности и инициативности. В экспериментальной группе значительно увеличилось число вопросов. Около половины детей задали от 2 до 4 вопросов. Таким образом, формируясь в процессе продуктивной познавательной деятельности, познавательная активность обнаружила себя и в образном плане, требующем воображения и некоторого отрыва от непосредственной ситуации.

Проведённый эксперимент позволяет заключить, что познавательные интересы имеют свою зону ближайшего развития и формируются под влиянием педагога во время проведения занятия с использованием игровых технологий.

Таким образом, используя игровые технологии на занятиях в начальной школе, можно целенаправленно развивать познавательные интересы у детей младшего школьного возраста. Результаты диагностики развития познавательных интересов у детей на констатирующем и контрольном этапах исследования представлены в таблице 3.

Таблица 3. Распределение детей экспериментальной (ЭГ) и контрольной (КГ) групп по уровням познавательных интересов (%)

Критерии и показатели Контрольный этап
Когнитивный (наличие познавательных вопросов, эмоциональная вовлеченность ребенка в деятельность) Низкий уровень Средний уровень Высокий уровень
КГ 30% 65% 5%
ЭК 25% 65% 10%
мотивационный (создание ситуаций успеха и радости, целенаправленность деятельности, ее завершенность) Низкий уровень Средний уровень Высокий уровень
КГ 49% 31% 20%
ЭК 44% 33% 23%
эмоционально-волевой (проявление положительных эмоций в процессе деятельности; длительность и устойчивость интереса к решению познавательных задач) Низкий уровень Средний уровень Высокий уровень
КГ 65% 33% 2%
ЭК 69% 31% -
действенно-практический (инициативность в познании; проявление уровней познавательной деятельности и настойчивости, степень инициативности ребенка) Низкий уровень Средний уровень Высокий уровень
КГ 32% 58% 10%
ЭК 25% 53% 22%

Данные таблицы указывают на значительные позитивные изменения в уровнях развития познавательных интересов в экспериментальной группе по сравнению с контрольной. Результаты исследования представлены в приложении 2.

Итак, результаты исследования убеждают в значимости организации и проведения занятий с использованием игровых технологий в качестве средства развития познавательных интересов детей. Таким образом, оценка результатов свидетельствует о том, что разработанные занятия для развития познавательных интересов младших школьников являются эффективными.

Таблица 4. Развитие познавательных интересов по итогам эксперимента

Критерии и показатели Констатирующий этап Контрольный этап
познавательных вопросов, эмоциональная вовлеченность ребенка в деятельность) Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
КГ 30% 65% 5% 29% 66% 5%
ЭК 25% 65% 10% 5% 35% 60%
мотивационный (создание ситуаций успеха и радости, целенаправленность деятельности, ее завершенность) Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
КГ 49% 31% 20% 39% 41% 20%
ЭК 44% 33% 23% 7% 57% 36%
эмоционально-волевой (проявление положительных эмоций в процессе деятельности; длительность и устойчивость интереса к решению познавательных задач) Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
КГ 65% 33% 2% 22% 68% 10%
ЭК 69% 31% - 15% 45% 40%
действенно-практический (инициативность в познании; проявление уровней познавательной деятельности и настойчивости, степень инициативности ребенка) Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
КГ 32% 58% 10% 40% 50% 10%
ЭК 25% 53% 22% 6% 24% 70%

В ходе целенаправленной работы по внедрению игр в процесс обучения на уроках у большинства учащихся отмечен рост познавательной активности, расширение и углубление познавательных интересов, желание и способности учиться. Появилось внимание школьников к своим особенностям, способностям, повысилась успеваемость, улучшилось их эмоциональное состояние.

Улучшению результатов способствовало внедрение в процесс обучения игровых методик. Отбор игрового материала осуществлялся на основе существенных признаков рассматриваемого понятия. Занятия строились таким образом, чтобы разные аспекты знаний получали логически последовательное развитие. Обучение чтению в форме игры способствуют развитию эмоциональной отзывчивости, активизации мыслительной деятельности, побуждают к личному участию в решении проблем.

Экспериментально доказано, что такие элементы познавательного интереса, как стремление преодолевать трудности при выполнении заданий, поиск путей решения заданий, концентрация внимания на объекте деятельности, увлеченность, активность, самостоятельность при применении игровых методик в процессе обучения формируются гораздо быстрее.

Обучающая роль игр заключается в том, что позволяет в игровой ситуации интенсифицировать процесс усвоения новых знаний, а положительные эмоции, возникающие в процессе игр, способствуют предупреждению перегрузки, обеспечивают коммуникативные и интеллектуальные умения.

Школьник становился активным, заинтересованным, мотивы учебной деятельности делались значимыми для детей.

Таким образом, анализ полученных результатов достоверно показывает, что занятия с использованием игровых технологий, разработанные нами, являются эффективным средством развития познавательных интересов младших школьников.

Заключение

В настоящее время школа нуждается в такой организации своей деятельности, которая обеспечила бы развитие индивидуальных способностей и творческого отношения к жизни каждого учащегося, внедрение различных инновационных учебных программ, реализацию принципа гуманного подхода к детям и пр. Иными словами, школа чрезвычайно заинтересована в знании об особенностях психического развития каждого конкретного ребенка. И не случайно все в большей степени возрастает роль практических знаний в профессиональной подготовке педагогических кадров.

Уровень обучения и воспитания в школе в значительной степени определяется тем, насколько педагогический процесс ориентирован на психологию возрастного и индивидуального развития ребенка. Это предполагает психолого-педагогическое изучение школьников на протяжении всего периода обучения с целью выявления индивидуальных вариантов развития, творческих способностей каждого ребенка, укрепления его собственной позитивной активности, раскрытия неповторимости его личности, своевременной помощи при отставании в учебе или неудовлетворительном поведении. Особенно важно это в младших классах школы, когда только начинается целенаправленное обучение человека, когда учеба становится ведущей деятельностью, в лоне которой формируются психические свойства и качества ребенка, прежде всего познавательные процессы и отношение к себе как субъекту познания (познавательные мотивы, самооценка, способность к сотрудничеству и пр.).

В связи с этим возникает актуальность в разработках игровых технологий для современной школы. В последнее время опубликовано несколько пособий по игровым технологиям. Хочется отметить работу А.Б. Плешаковой «Игровые технологии в учебном процессе», А.В. Финогенова «Игровые технологии в школе» и О.А. Степановой «Профилактика школьных трудностей у детей».

Изучение литературы, анализ и обобщение собранных по проблеме материалов дали нам возможность определить теоретические основы использования игровых технологий для развития познавательных интересов младших школьников.

В результате работы нами было рассмотрено понятие «познавательный интерес» в психолого-педагогической литературе, определены особенности развития познавательных интересов младших школьников, выявлена роль игровых технологий в развитии познавательных интересов у детей младшего школьного возраста.

Нами было проведено экспериментальное исследование, состоящее из трех этапов. На констатирующем этапе эксперимента мы провели диагностику уровней сформированности познавательных интересов учащихся 4 класса, который показал, что у большинства детей отсутствуют познавательные интересы или находятся на довольно низком уровне.

Формирующий этап эксперимента позволил нам провести ряд занятий по развитию познавательных интересов учащихся. На занятиях этого этапа мы применили различные формы игровой деятельности, разработали специальные упражнения с применением игровых ситуаций.

Контрольный этап подтвердил эффективность разработанных нами занятий по развитию познавательных интересов младших школьников. Данные контрольного этапа показали, что изученный в процессе игровой деятельности материал забывается учащимися в меньшей степени и медленнее, чем материал, при изучении которого игра не использовалась. Это объясняется, прежде всего, тем, что в игре органически сочетается занимательность, делающая процесс познания доступным и увлекательным для школьников, и деятельность, благодаря участию которой в процессе обучения, усвоение знаний становится более качественным и прочным.

Исследование показало, что игры активизируют познавательную деятельность на всех стадиях изучения нового материала, используя возможности методических приемов, направленных на изучение русского языка.

Для младших школьников недостаточно создавать положительный эмоциональный фон. Необходимо включать учащихся в активную деятельность, «соединяющую ум с сердцем». Такое положение позволяют решать игры.

Мы пришли к выводам, что использование игровых технологий в период обучения в начальной школе является наиболее эффективным средством повышения качества знаний учащихся по предмету. Поэтому творчески работать следует каждому учителю. Самым главным является то, что учитель должен обладать творческой деятельностью, умело и методически правильно использовать данное средство, способствуя приобщению интересов и стремления каждого ученика к знаниям и повышения своей грамотности путём глубокого, осознанного и прочного усвоения языковых знаний.

Использование на уроках игровых методик является важным средством воспитания и обучения. Часто в результате таких занятий неуспевающие ученики начинают проявлять интерес и лучше заниматься, у них развивается интерес к чтению, что очень важно в начальных классах. У многих детей обнаруживаются большие способности, инициатива, изобретательность.

Как удалось установить, введение в процесс обучения игр способствует углублению познавательного интереса, повышению мотивации учебной деятельности, развитию коммуникативных умений. Одна из существенных задач использования игр на уроках – формирование навыков самостоятельной работы, развитие познавательной активности младших школьников.

Таким образом, задачи, поставленные в начале работы, были решены, цель исследования достигнута, гипотеза подтверждена.

Библиография

1. Актуальные вопросы формирования интереса в обучении / Под ред. Г.И. Щукиной. - М.: Просвещение, 1984.- С.34.

2. Аникеева Н.П. Воспитание игрой [Текст] /Н.П. Аникеева. - М.: Просвещение, 1987.- 334 с.

3. Баев, И.М. Играем на уроках русского языка [Текст] /И.М.Баев. - М.:Просвещение, 1989.- С.113.

4. Барташникова И.А. Учись играя [Текст] / И.А. Барташникова, А.А.Барташников. - Харьков, 1997.- С.45.

5. Бесова М.А. Познавательные игры от А до Я [Текст] / М.А. Бесова. – Ярославль: Академия развития, 2004. – 272 с.

6. Божович Л.И. Проблемы формирования личности [Текст]/Л.И. Божович.-М.:Педагогика, 1997. - М.: Просвещение,- С.324.

7. Брунер Дж. Психология познания [Текст]/Д. Брунер. – М.: Просвещение, 1977.- С.423.

8. Венгер В.А. Развитие познавательных способностей в процессе дошкольного воспитания [Текст]/В.А. Венгер. - М.: Просвещение, 1986.- С.80.

9. Возрастная и педагогическая психология//Под ред. М.В. Гамезо. М., Просвещение, 1984 – С.446.

10. Выготский Л.С. Психология познания [Текст]/Л.С. Выготский. – М.: Просвещение, 1977.- С.127.

11. Газман О.С. В школу - с игрой [Текст] /О.С. Газман. - М.: Просвещение, 1991.- 334 .

12. Галицын В.Б. Познавательная активность дошкольников [Текст] / В.Б. Галицын// Советская педагогика. -1991. -№ 3.- С.23.

13. Грачева Н.В. Педагогические условия активизации познавательной направленности дошкольников [Текст]/Н.В. Грачева. – Киров, 2003.- С.55.

14. Дейкина А.Ю. Познавательный интерес: сущность и проблемы изучения [Текст] /А.Ю. Дейкина.- М.: Просвещение, 2002.- С.345.

15. Денисенко, Н. Формирование познавательного отношения к учебной задаче (в подготовительной группе) [Текст]/Н.Денисенко// Дошкольное воспитание. -1991. -№ 3.- С.18.

16. Ермолаева, М.В. Психолого-педагогическая практика в системе образования [Текст]/М.В. Ермолаева, А.Е. Захарова, Л.И. Калинина, С.И. Наумова. – М.:Просвещение, 1998.-336 с.

17. Зайцева И.А. Формирование познавательного интереса к учению как способ развития креативных способностей личности [Текст]/И.А.Зайцева. – Ноябрьск, 2005.- С.12-24.

18. Занъко С.Ф.. Игра и ученье [Текст] /С.Ф. Занько. - М.:Просвещение, 1992.- 226 с.

19. Костаева Т.В. К вопросу об исследовании устойчивого познавательного интереса учащихся [Текст]/ Т.В. Костаева // Педагогика сотрудничества: проблемы образования молодежи. – Вып.5. – Саратов: Изд-во Саратовского пединститута, 1998.- С.28.

20. Кулюткин Ю. Н. Мотивация познавательной деятельности [Текст] /Ю.Н. Кулюткин, Г.С. Сухобская. - М.:Просвещение, 1972.-С.55.

21. Макаренко А.С. Некоторые выводы из педагогического опыта. Соч. т.V. [Текст] /А.С. Макаренко. - М.:Просвещение, 1958.- С.69.

22. Маркова А.К. Формирование мотивации учения в школьном возрасте: Пособие для учителя [Текст] /А.К. Маркова. – М.: Просвещение, 1983. – 96 с.

23. Минкин Е.М. От игры к знаниям [Текст] /Е.М. Минкин. - М.:Просвещение, 1983.- С.254.

24. Морозова, Н.Г. Учителю о познавательном интересе [Текст] / Н.Г.Морозова // Психология и педагогика.-1979.- №2.- С. 5.

25. Мухина В.С. Возрастная психология [Текст]/В.С. Мухина. – М.: Просвещение, 1998.- С.228.

26. Немов Р.С. Психология / В 3-х кн. [Текст]/Р.С. Немов. – М.: Просвещение, 1995.- 324с.

27. Основы психологии: Практикум / Ред.-сост. Л.Д. Столяренко.- М.: Просвещение, 2003.- С.337.

28. Педагогика: педагогические теории, системы, технологии// Учебное пособие.- М.: Просвещение, 1988.- С.456с.

29. Пидкасистый П.И. Технология игры в обучении и развитии [Текст] / П.И. Пидкасистый, Ж.С. Хайдаров. - М.: РПА, 1996.- С.80.

30. Савина, Ф.К. Формирование познавательных интересов учащихся в условиях реформы школы: Учеб. пособие к спецкурсу [Текст] / Ф.К.Савина. - Волгоград: ВГПИ им. А.С. Серафимовича, 1989. - 67с.

31. Сластенин В.А. и др. Педагогика: Учеб. пособие для студ. высш. пед. учеб. заведений [Текст]/ В.А. Сластенин, И.Ф. Исаев, Е.Н. Шиянов; Под ред. В.А. Сластенина. - М.: Издательский центр "Академия", 2002.- 432 с.

32. Талызина Н.Ф. Педагогическая психология [Текст]/Н.Ф.Талызин. – М.: Просвещение, 1999.- С.224.

33. Тихомирова Л.Ф. Развитие познавательных способностей детей: популярное пособие для родителей и педагогов [Текст]/Л.Ф. Тихомирова. – Ярославль: Академия развития, 1997. – 227 с.

34. Ушаков, Н.Н. Занимательные материалы к урокам русского языка в начальных классах [Текст] /Н.Н.Ушаков. – М. – Просвещение, 1986. – 83 с.

35. Фридман Л.М., Кулагина И.Ю. Психологический справочник учителя [Текст] /Л.М. Фридман, И.Ю. Кулагина. – М.: Просвещение, 1999.- С.175.

36. Харламов И.Ф. Педагогика: учебное пособие [Текст]/И.Ф. Харламов. М.: Юристь, 1997. – 512 с.

37. Щукина Г.И, Активация познавательной деятельности учащихся в учебном процессе [Текст] /Г.И. Щукина. - М.: Просвещение, 1979. -С. 97.

38. Щукина Г.И. Методы изучения и формирования познавательных интересов учащихся [Текст] /Г.И. Щукина. - М.: Педагогика, 1971. - 358 с.

39. Щукина Г.И. Педагогические проблемы формирования познавательных интересов учащихся [Текст] /Г.И. Щукина. - М.: Педагогика, 1988. - 208 с.

40. Щукина Г.И. Педагогические проблемы формирования познавательных интересов учащихся [Текст]/Г.И. Щукина.- М.: Просвещение, 1988.- С.334.

41. Щукина, Г.И. Проблема познавательного интереса в педагогике [Текст] /Г.И. Щукина. – М.:Просвещение, 1971.- С.175.

42. Элъконин, Д.Б. Психология игры [Текст] /Д.Б. Эльконин. - М.: Просвещение, 1979.- С.25.

 

Возможно, будет полезно почитать: